Ионная кристаллическая решетка хлорид натрия. Плотность и концентрация водных растворов NaCl. Металлическая связь в кристаллических решетках

21.09.2019

Ионные соединения (например, хлорид натрия NaCl) - твердые и тугоплавкие от того, что между зарядами их ионов ("+" и "-") существуютмощные силы электростатического притяжения.

Отрицательно заряженный ион хлора притягивает не только "свой" ион Na+, но и другие ионы натрия вокруг себя. Это приводит к тому, что около любого из ионов находится не один ион с противоположным знаком, а несколько (рис. 1).

Рис. 1

Фактически, около каждого иона хлора располагается 6 ионов натрия, а около каждого иона натрия - 6 ионов хлора.

Такая упорядоченная упаковка ионов называется ионным кристаллом. Если в кристалле выделить отдельный атом хлора, то среди окружающих его атомов натрия уже невозможно найти тот, с которым хлор вступал в реакцию. Притянутые друг к другу электростатическими силами,ионы крайне неохотно меняют свое местоположение под влиянием внешнего усилия или повышения температуры. Но если температура очень велика (примерно 1500°C), то NaCl испаряется, образуя двухатомные молекулы. Это говорит о том, что силы ковалентного связывания никогда не выключаются полностью.

Ионные кристаллы отличаются высокими температурами плавления, обычно значительной шириной запрещенной зоны, обладают ионной проводимостью при высоких температурах и рядом специфических оптических свойств (например, прозрачностью в ближней области ИК спектра). Они могут быть построены как из одноатомных, так и из многоатомных ионов. Пример ионных кристаллов первого типа -кристаллы галогенидов щелочных и щелочно-земельных металлов; анионы располагаются по закону плотнейшей шаровой упаковки илиплотной шаровой кладки, катионы занимают соответствующие пустоты. Наиболее характерные структуры такого типа - NaCl, CsCl, CaF2.Ионные кристаллы второго типа построены из одноатомных катионов тех же металлов и конечных или бесконечных анионных фрагментов. Конечные анионы (кислотные остатки) - NO3-, SO42-, СО32- и др. Кислотные остатки могут соединяться в бесконечные цепи, слои или образовывать трехмерный каркас, в полостях которого располагаются катионы, как, например, в кристаллических структурах силикатов. Для ионных кристаллов можно рассчитать энергию кристаллической структуры U (см. табл.), приближенно равнуюэнтальпии сублимации; результаты хорошо согласуются с экспериментальными данными. Согласно уравнению Борна-Майера, длякристалла, состоящего из формально однозарядных ионов:

U = -A/R + Ве-R/r - C/R6 - D/R8 + E0

  • (R - кратчайшее межионное расстояние, А - константа Маделунга, зависящая от геометрии структуры, В и r - параметры, описывающие отталкивание между частицами, C/R6 и D/R8 характеризуют соответствующие диполь-дипольное и диполь-квадрупольное взаимодействие ионов, E
  • 0 - энергия нулевых колебаний, е
  • - заряд электрона). С укрупнением катиона возрастает вклад дипольных взаимодействий.

Координационные структуры. Координационными называются решетки, Б которых каждый атом (нон) окружен определенным числом соседей, находящихся на равных расстояниях и удерживаемых одинаковым типом химической связи (ионной, ковалентной, металлической). К координационным относятся ранее рассмотренные решетки хлорида натрия и хлорида цезия (см. рис. 58), алмаза (см. рис. 64) и металлов (см. рис. 65). 

    В больщинстве случаев поляризующее влияние катиона и поляризуемость анионов (особенно таких, как анион иода, серы,кислорода) приводят к увеличению ковалентного характера связей. Другим фактором, оказывающим действие на состояние связей, является степень экранирования катиона соединенными с ним анионами. Так, например, в решетке хлорида натрия анионы хлора в гораздо меньшей степени экранируют катион, чем в решетке хлорида алюминия или олова (IV). Решетка хлорида алюминия, возникшая при конденсации газообразного хлорида, имеет все шансы сохранить в узлах молекулы - ее ионный характер выражен очень слабо. Но уже фторид алюминия, в молекуле которого ион алюминия окружен анионами меньшего радиуса, дает при конденсации решетку ионного типа и само соединение имеет солеобразный характер. 

Кристаллические решетки, в узлах которых находятся отделе-ные атомы, называют атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером можег служить алмаз - одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе равно 4. Структура алмаза приведена на с. 127. В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую макромолекулу. Число веществ с атомной кристаллической решеткой в неорганической химии велико. Они имеют высокие температуры плавления (у алмаза свыше 3500 °С), прочны и тверды, практически нерастворимы в жидкостях. 

Упрощенная модель ионной решетки хлорида натрия. 

Для оценки точности формулы (11.6) представляет интерес сопоставить АСкаС с изменением энтальпии в ходе разрушения кристаллической решетки хлорида натрия АВ аа- Величину A/fsaa можно определить при помощи следующего термодинамического цикла  

Чем отличаются ионы, содержащиеся в кристаллической решетке хлорида натрия и гидроксида натрия, от ионов, содержащихся в растворах этих веществ  

    Пространственное расположение ионов в ионной решетке хлорида натрия. 

Рассмотрим структуру типичных неорганических веществ. На рис. 1 приведена кристаллическая решетка хлорида натрия. Приня- 

Дефекты этого типа наблюдаются, например, в решетке хлорида натрия - некоторые узлы, отвечающие катионам и анионам, остаются пустыми. Анионы вообще редко смещаются в междоузлия, так как они, как правило, крупнее катионов. Для катионов возможны оба типа дефектов. 

В другом цикле, предложенном Майером (1930), используются энергии сублимации галогенидов шелочных металлов, энергии диссоциации их газообразных молекул и некоторые другие термохимические величины, уже фигурировавшие в цикле Габера - Борна. Для Na l этот цикл дает AG = 75(5 кДж-м оль. Таким образом, можно полагать, что энергия решетки хлорида натрия должна лежать в пределах от 760 до 790 кДж-моль, куда попадают значения, подсчитанные по уравнениям. (1.23) и (1.25) величину 762 кДж-моль- можно считать наиболее вероятным значением энергии решетки Na l. 

Кристаллические решетки, в узлах которых находятся отдельные атомы, называют атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз - одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе равно 4. Структура алмаза приведена на рис. 84. В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую макромолекулу. 

Тепловой эффект здееь характеризует энергию кристаллической решетки хлорида натрия. 

Способ образования ионных решеток приводит к тому, что они обладают компактной структурой. Кристаллическая решетка хлорида натрия построена как бы взаимопроникновением гранецентрированных кубических систем, одна из которых содержит только катионы N3+, а другая - анионы С1 рис. 19). 

В решетке хлорида натрия координационные числа обоих ион зв равны 6. Итак, в кристалле хлорида натрия нельзя выделить отдельные молекулы соли. Их нет. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Ка+ и С1 , На С1 , где/г - большое число (см. рис. 3.15). Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки и малолетучи. 

Некоторые электролиты уже до растворения состоят из ионов. Так, например, кристаллическая решетка хлорида натрия построена из ионов натрия и хлорид-ионов, решетка нитрата калия - из. ионов калия и нитрат-ионов и т. п. При растворении таких веществ ионы сольватируются и переходят в жидкую фазу. В растворе нет молекул растворенного вещества, имеются только ионы. Такие электролиты называют сильными электролитами. 

Воспол11зуемся приведенными уравЕ(ениямн для оценки энергии решетки хлорида натрия. Формула Борна (1.23) после подстановки численных значений всех входящих в нее величин дает для энергии решетки 

Энергии и теплоты сольватации электролитов были рассчитаны впервые Борном и Габером (1919) фи помощи циклов, основанных на термохимическом законе Гесса. Так, например, при вычислении теплоты гидратации хлорида натрия 1 моль твердой кристаллической соли мысленно переводят в бесконечно большсш объем воды при зтом выделяется теплота растворения -AHl, = Qь Тот же раствор хлорида натрия можно получить, если сначала разрушить кристаллическую решетку с образованием ионов натрия и хлора в газовой фазе на это затрачивается элергия, равная энергии решетки хлорида натрия -Д(5р = - V Затем эти ионы переводят в бесконечно большой объем воды, при этом освобождается суммарная теплота гидратации ионов натрия и хлора - Д/У, + 

Энтропия метанола, СН3ОН, при растворении возрастает лишь незначительно, поскольку моль молекул метанола, диспергированных между молекулами воды, оказывается нена шого больше неупорядоченным, чем моль чистого жидкого метанола. Растворение муравьиной кислоты, НСООН, приводит к большему возрастанию энтропии, поскольку ее молекулы частично диссоциируют на протоны и формиат-ионы, НСОО в результате чего из одной частицы образуются две. Кристаллическая решетка хлорида натрия при растворении полностью разрушается, и при этом образуются гидратированные ионы Na и С1 , что обусловливает значительное возрастание неупорядоченности, хотя часть молекул воды оказывается связанной вследствие гидратирования ионов. Заметим, что энтропия раствора Na l получена из данньк приложения 3 путем сум шрования энтропий водных растворов двух ионов  

Следовательно, энергия кулононского взаимодействия одною иона со всеми другими ионами в решетке хлорида натрия в а раз превышает энергию взаимодействия двух однозарядных иоков, находящихся на расстоянии г. Таким образом, коэффициент Маделунга а для Na l равен 1,7475. Аналогичным методом можно вычислить эти величины и для других кристаллических решеток. Значения коэффициентов Маделунга для некоторых типов кристаллических структур приведены в табл. 24. 

Помимо типов связи кристаллы отличаются своей геометрией. Кубическая решетка хлорида натрия является простейшим примером. Кристалл СзС1 образует так называемую объемно-центрированную кубическую решетку. В вершинах куба, образующего элементарную ячейку, находятся одноименно заряженные ионы, скажем, ионы С1 , а в центре куба - ион Сз+. В то же время этот центр может рассматриваться, как вершина другого куба, в вершинах которого находятся ионы цезия, а в центре-анион С1 . В этом варианте каждый ион окружен восемью (а не шестью, как в случае ЫаС1) противоионами, т. е. координационное число равно восьми (рис. 55). 

Для галидов щелочных и щелочноземельных металлов харак-кулярных, образующих молекулярные решетки. Степень ковалент-рированная решетка хлорида натрия. Хлорид, бромид и иодид цезия кристаллизуются в решетке типа объемно центрированного куба. Тип решетки ионного кристалла определяется правилом, основанным на простых геометрических соображениях отношение радиусов катиона и аниона 0,2 соответствует решетке типа сульфида цинка если это отношение лежит в пределах от 0,22 до 0,41, мож- 

Число ближайших соседних частиц, вплотную примыкающих к данной частице в кристалле или в отдельной молекуле, назысается координационным числом. В решетке хлорида натрия координационные числа обоих ионов равны 6. Итак, в кристалле хлорида натрия нельзя выделить отдельные ионные молекулы соли. Их нет. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов и С1 , например Ыа,Х, где п- большое число (см. рис. 1.21). Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высоко11 твердостью. Они тугоплавки и малолетучи. 

Существенно то, что в структуре поваренной соли нельзя очертить отдельные молекулы ЫаС1, так как их нет. Атомы натрия и хлора в решетке хлорида натрия не связаны попарно между собой. Между тем в условиях повышенной температуры в парах хлорида натрия существуют молекулы ЫаС1. При этом равновесное расстояние между натрием и хлором в кристалле на 15% больше, чем в газообразной молекуле Na l, т. е. последняя менее ионна. 

Таким образом, во всех рассмотренных структурах нельзя выделить обособленные молекулы в кристаллической решетке. Такие кристаллические решетки, в которых отсутствуют дискретные молекулы, называются координационными решетками. Для большинства неорганических веществ (более 95%) характерны именно координационные решетки. К ним относятся условно ионные, металлические и ковалентные решетки. К условно ионным решеткам принадлежит решетка хлорида натрия, металлическим - решетка натрия и ковалентным - решетки кремния и сульфида цинка. Это деление, основанное на преобладающем типе химической связи, условно. В реальных кристаллах сосуществуют различные типы химической связи, и можно рассматривать решетки ионно-ко-валентные, ковалентно-металлические и т. п. На рис. 5 для сравнения приведены элементарные ячейки м.о. 1екулярных решеток иода (а) и диоксида углерода (б). Их важнейшей особенностью в отличие от предыдущих типов кристаллов является то, что в узлах кристаллической решетки находятся не атомы, а молекулы. При этом расстояния между атомами в молекуле меньше, чем межмолекулярные расстояния в кристалле, в то время как в координационных решетках все расстояния одинаковы. Однако молекулярные решетки не характерны для твердых неорганических веществ. В неорганической химии молекулы являются типичной формой существования химического соединения в наро- и газообразном состоянии. 

Отсюда Ещ, = -772,4 кДж/моль. Большая отрицательная величина энергии кристаллической решетки хлорида натрия указывает на экзотермичность процесса образования и значительную стабильность кристаллического Na l. Расчеты по приведенной схеме, называемой циклом Борна - Габера, крайне важны в неорганической химии, поскольку позволяют оценить энергию связи в соединении и другие важные энергетические характеристики твердых тел. 

Отсюда и = -772,А кДж/моль. Большая отрицательная величина энергии кристаллической решетки хлорида натрия указывает на экзотермичность процесса образования и значительную стабильность кристаллического Na l. 

Термохимический цикл для расчета эиергаи кристаллической решетки хлорида натрия складывается из следующих реакций  

Смотреть страницы где упоминается термин Решетка хлорида натрия :                   Общая химия (1968) -- [

Большинство твёрдых веществ имеет кристаллическое строение, которое характеризуется строго определённым расположением частиц . Если соединить частицы условными линиями, то получится пространственный каркас, называемый кристаллической решёткой . Точки, в которых размещены частицы кристалла, называют узлами решётки . В узлах воображаемой решётки могут находиться атомы , ионы или молекулы .

В зависимости от природы частиц, расположенных в узлах, и характера связи между ними различают четыре типа кристаллических решёток: ионную , металлическую , атомную и молекулярную .

Ионными называют решётки, в узлах которых находятся ионы.

Их образуют вещества с ионной связью. В узлах такой решётки располагаются положительные и отрицательные ионы, связанные между собой электростатическим взаимодействием.

Ионные кристаллические решётки имеют соли , щёлочи , оксиды активных металлов . Ионы могут быть простые или сложные. Например, в узлах кристаллической решётки хлорида натрия находятся простые ионы натрия Na + и хлора Cl − , а в узлах решётки сульфата калия чередуются простые ионы калия K + и сложные сульфат-ионы S O 4 2 − .

Связи между ионами в таких кристаллах прочные. Поэтому ионные вещества твёрдые , тугоплавкие , нелетучие . Такие вещества хорошо растворяются в воде .

Кристаллическая решётка хлорида натрия

Кристалл хлорида натрия

Металлическими называют решётки, которые состоят из положительных ионов и атомов металла и свободных электронов.

Их образуют вещества с металлической связью. В узлах металлической решётки находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы, отдавая свои внешние электроны в общее пользование).

Такие кристаллические решётки характерны для простых веществ металлов и сплавов .

Температуры плавления металлов могут быть разными (от \(–37\) °С у ртути до двух-трёх тысяч градусов). Но все металлы имеют характерный металлический блеск , ковкость , пластичность , хорошо проводят электрический ток и тепло .

Металлическая кристаллическая решётка

Металлические изделия

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, соединённые ковалентными связями.

Такой тип решётки имеет алмаз - одно из аллотропных видоизменений углерода. К веществам с атомной кристаллической решёткой относятся графит , кремний , бор и германий , а также сложные вещества, например, карборунд SiC и кремнезём , кварц , горный хрусталь , песок , в состав которых входит оксид кремния(\(IV\)) Si O 2 .

Таким веществам характерны высокая прочность и твёрдость . Так, алмаз является самым твёрдым природным веществом. У веществ с атомной кристаллической решёткой очень высокие температуры плавления и кипения . Например, температура плавления кремнезёма - \(1728\) °С, а у графита она выше - \(4000\) °С. Атомные кристаллы практически нерастворимы .

Кристаллическая решётка алмаза

Алмаз

Молекулярными называют решётки, в узлах которых находятся молекулы, связанные слабым межмолекулярным взаимодействием.

Несмотря на то, что внутри молекул атомы соединены очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому молекулярные кристаллы имеют небольшую прочность и твёрдость , низкие температуры плавления и кипения . Многие молекулярные вещества при комнатной температуре представляют собой жидкости и газы . Такие вещества летучи . Например, кристаллические иод и твёрдый оксид углерода(\(IV\)) («сухой лёд») испаряются, не переходя в жидкое состояние. Некоторые молекулярные вещества имеют запах .

Такой тип решётки имеют простые вещества в твёрдом агрегатном состоянии: благородные газы с одноатомными молекулами (He , Ne , Ar , Kr , Xe , Rn ), а также неметаллы с двух- и многоатомными молекулами ( H 2 , O 2 , N 2 , Cl 2 , I 2 , O 3 , P 4 , S 8).

Молекулярную кристаллическую решётку имеют также вещества с ковалентными полярными связями: вода - лёд , твёрдые аммиак , кислоты , оксиды неметаллов . Большинство органических соединений тоже представляют собой молекулярные кристаллы (нафталин , сахар , глюкоза ).

Для большинства веществ характерна способность в зависимости от условий находиться в одном из трех агрегатных состояний: твердом, жидком или газообразном.

Например, вода при нормальном давлении в интервале температур 0-100 o C является жидкостью, при температуре выше 100 о С способна существовать только в газообразном состоянии, а при температуре менее 0 о С представляет собой твердое вещество.
Вещества в твердом состоянии различают аморфные и кристаллические.

Характерными признаками аморфных веществ является отсутствие четкой температуры плавления: их текучесть плавно увеличивается с ростом температуры. К аморфным веществам относятся такие соединения, как воск, парафин, большинство пластмасс, стекло и т.д.

Все же кристаллические вещества обладают конкретной температурой плавления, т.е. вещество с кристаллическим строением переходит из твердого состоянии в жидкое не постепенно, а резко, при достижении конкретной температуры. В качестве примера кристаллических веществ можно привести поваренную соль, сахар, лед.

Разница в физических свойствах аморфных и кристаллических твердых веществ обусловлена прежде всего особенностями строения таких веществ. В чем заключается разница между веществом в аморфном и кристаллическом состоянии, проще всего понять из следующей иллюстрации:

Как можно заметить, в аморфном веществе, в отличие от кристаллического, отсутствует какой-либо порядок в расположении частиц. Если же в кристаллическом веществе мысленно соединить прямой два близкорасположенных друг к другу атома, то можно обнаружить, что на этой линии на строго определенных промежутках будут лежать одни и те же частицы:

Таким образом, в случае кристаллических веществах можно говорить о таком понятии, как кристаллическая решетка.

Кристаллической решеткой называют пространственный каркас, соединяющий точки пространства, в которых находятся частицы, образующие кристалл.

Точки пространства, в которых находятся образующие кристалл частицы, называют узлами кристаллической решетки .

В зависимости от того, какие частицы находятся в узлах кристаллической решетки, различают: молекулярную, атомную, ионную и металлическую кристаллические решетки .

В узлах молекулярной кристаллической решетки
Кристаллическая решетка льда как пример молекулярной решетки

находятся молекулы, внутри которых атомы связаны прочными ковалентными связями, однако сами молекулы удерживаются друг возле друга слабыми межмолекулярными силами. Вследствие таких слабых межмолекулярных взаимодействий кристаллы с молекулярной решеткой являются непрочными. Такие вещества от веществ с иными типами строения отличаются существенно более низкими температурами плавления и кипения, не проводят электрический ток, могут как растворяться, так и не растворяться в различных растворителях. Растворы таких соединений могут как проводить, так и не проводить электрический ток в зависимости от класса соединения. К соединениям с молекулярной кристаллической решеткой относятся многие простые вещества — неметаллы (отвержденные H 2 , O 2 , Cl 2 , ромбическая сера S 8 , белый фосфор P 4), а также многие сложные вещества – водородные соединения неметаллов, кислоты, оксиды неметаллов, большинство органических веществ. Следует отметить, что, если вещество находится в газообразном или жидком состоянии, говорить о молекулярной кристаллической решетке неуместно: корректнее использовать термин — молекулярный тип строения.

Кристаллическая решетка алмаза как пример атомной решетки
В узлах атомной кристаллической решетки

находятся атомы. При этом все узлы такой кристаллической решетки «сшиты» между собой посредством прочных ковалентных связей в единый кристалл. Фактически, такой кристалл является одной гигантской молекулой. Вследствие особенностей строения все вещества с атомной кристаллической решеткой являются твердыми, обладают высокими температурами плавления, химически мало активны, не растворимы ни в воде, ни в органических растворителях, а их расплавы не проводят электрический ток. Следует запомнить, что к веществам с атомным типом строения из простых веществ относятся бор B, углерод C (алмаз и графит), кремний Si, из сложных веществ — диоксид кремния SiO 2 (кварц), карбид кремния SiC, нитрид бора BN.

У веществ с ионной кристаллической решеткой

в узлах решетки находятся ионы, связанные друг с другом посредством ионных связей.
Поскольку ионные связи достаточно прочны, вещества с ионной решеткой обладают сравнительно высокой твердостью и тугоплавкостью. Чаще всего они растворимы в воде, а их растворы, как и расплавы проводят электрический ток.
К веществам с ионным типом кристаллической решетки относятся соли металлов и аммония (NH 4 +), основания, оксиды металлов. Верным признаком ионного строения вещества является наличие в его составе одновременно атомов типичного металла и неметалла.

Кристаллическая решетка хлорида натрия как пример ионной решетки

наблюдается в кристаллах свободных металлов, например, натрия Na, железа Fe, магния Mg и т.д. В случае металлической кристаллической решетки, в ее узлах находятся катионы и атомы металлов, между которыми движутся электроны. При этом движущиеся электроны периодически присоединяются к катионам, таким образом нейтрализуя их заряд, а отдельные нейтральные атомы металлов взамен «отпускают» часть своих электронов, превращаясь, в свою очередь, в катионы. Фактически, «свободные» электроны принадлежат не отдельным атомам, а всему кристаллу.

Такие особенности строения приводят к тому, что металлы хорошо проводят тепло и электрический ток, часто обладают высокой пластичностью (ковкостью).
Разброс значений температур плавления металлов очень велик. Так, например, температура плавления ртути составляет примерно минус 39 о С (жидкая в обычных условиях), а вольфрама — 3422 °C. Следует отметить, что в обычных условиях все металлы, кроме ртути, являются твердыми веществами.

В воде

35,6 г/100 мл (0 °C)
35,9 г/100 мл (+25 °C)
39,1 г/100 мл (+100 °C) Растворимость в метаноле 1,49 г/100 мл Растворимость в аммиаке 21,5 г/100 мл Оптические свойства Показатель преломления 1,544202 (589 нм) Структура Координационная геометрия Октаэдральная (Na +)
Октаэдральная (Cl -) Кристаллическая структура гранецентрированная кубическая, cF8 Классификация Рег. номер CAS 7647-14-5 PubChem Рег. номер EINECS 231-598-3 SMILES InChI RTECS VZ4725000 ChEBI ChemSpider Безопасность ЛД 50 3000–8000 мг/кг NFPA 704 Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Кристалл хлорида натрия

Хлори́д на́трия или хлористый натрий (NaCl) - натриевая соль соляной кислоты . Известен в быту под названием поваренной соли , основным компонентом которой и является. Хлорид натрия в значительном количестве содержится в морской воде , придавая ей солёный вкус [ ] . Встречается в природе в виде минерала галита (каменной соли). Чистый хлорид натрия представляет собой бесцветные кристаллы, но с различными примесями его цвет может принимать голубой, фиолетовый, розовый, жёлтый или серый оттенок.

Нахождение в природе и производство

В природе хлорид натрия встречается в виде минерала галита , который образует залежи каменной соли среди осадочных горных пород, прослойки и линзы на берегах солёных озёр и лиманов , соляные корки в солончаках и на стенках кратеров вулканов и в сольфатарах. Огромное количество хлорида натрия растворено в морской воде. Мировой океан содержит 4 × 10 15 тонн NaCl, то есть из каждой тонны морской воды можно получить в среднем 1,3 кг хлорида натрия. Следы NaCl постоянно содержатся в атмосфере в результате испарения брызг морской воды. В облаках на высоте полтора километра 30 % капель, больших 10 мкм по размеру, содержат NaCl. Также он найден в кристаллах снега.

Наиболее вероятно, что первое знакомство человека с солью произошло в лагунах тёплых морей или на соляных озёрах, где на мелководье солёная вода интенсивно испарялась под действием высокой температуры и ветра, а в осадке накапливалась соль. По образному выражению Пифагора , «соль была рождена благородными родителями: солнцем и морем» .

Галит

В природе хлорид натрия чаще всего встречается в виде минерала галита. Он имеет гранецентрированную кубическую решётку и содержит 39,34 % , 60,66 % . Другими химическими элементами, входящими в состав примесей, являются: , , , , , , , , , , , , , , , . Плотность 2,1-2, 2 г/см³, а твёрдость по шкале Мооса - 2. Бесцветный прозрачный минерал со стеклянным блеском. Распространённый минерал соленосных толщ. Образуется при осаждении в замкнутых водоёмах, а также как продукт сгона на стенках кратеров вулканов. Составляет пласты в осадочных породах лагунных и морских фаций, штокоподобные тела в соляных куполах и тому подобных.

Каменная соль

Каменной солью называют осадочную горную породу из группы эвапоритов, состоящую более чем на 90 % из галита. Галит также часто называют каменной солью. Эта осадочная горная порода может быть бесцветной или снежно-белой, но чаще она окрашена примесями глин, талька (серый цвет), оксидами и гидроксидами железа (жёлтый, оранжевый, розовый, красный), битумами (бурая). Каменная соль содержит хлориды и сульфаты натрия, калия, магния и кальция, бромиды, иодиды, бораты, гипс, примеси карбонатно-глинистого материала, доломита, анкериту, магнезита, битумов и так далее .

По условиям формирования месторождений каменную соль подразделяют на следующие виды :

  • рассолы современных соляных бассейнов
  • соляные подземные воды
  • залежи минеральных солей современных соляных бассейнов
  • ископаемые залежи (важнейшие для промышленности).

Морская соль

Морская соль является смесью солей (хлориды , карбонаты , сульфаты и т. д.), образующейся при полном испарении морской воды. Среднее содержание солей в морской воде составляет:

Очищенная кристаллическая морская соль

При испарении морской воды при температуре от +20 до +35 °C в осадке сначала кристаллизуются наименее растворимые соли - карбонаты кальция и магния и сульфат кальция. Затем выпадают более растворимые сульфаты натрия и магния, хлориды натрия, калия и магния, и после них - сульфаты калия и магния. Последовательность кристаллизации солей и состав осадка может несколько варьироваться в зависимости от температуры, скорости испарения и других условий. В промышленности морскую соль получают из морской воды, в основном методом обычного выпаривания. Она отличается от каменной соли значительно большим содержанием других химических солей, минералов и различных микроэлементов, в первую очередь йода, калия, магния и марганца. Соответственно, она отличается от хлорида натрия и по вкусу - горько-солёный привкус ей придают соли магния. Она используется в медицине: при лечении кожных заболеваний, таких как псориаз . Как лечебное вещество в аптечной и обычной торговой сети, распространённым продуктом является соль из Мёртвого моря . В очищенном виде этот вид соли также предлагается в продуктовой торговой сети - как натуральная и богатая йодом пищевая .

Залежи

Залежи каменной соли найдены во всех геологических системах. Важнейшие из них сосредоточены в кембрийских , девонских , пермских и третичных отложениях. Каменная соль составляет мощные пластовые залежи и ядра сводчатых структур (соляных куполов и штоков), образует прослойки, линзы, гнезда и вкрапления в других породах . Среди озёрных месторождений России крупнейшие - Эльтонское , Баскунчак в Прикаспии, Кучукское озеро , Кулундинское озеро , Эбейты и другие озёра в Западной Сибири.

Производство

В древности технология добычи соли заключалась в том, что соляную рапу (раствор) вытаскивали лошадиным приводом из шахт, которые назывались «колодцами» или «окнами», и были достаточно глубокими - 60-90 м. Извлечённый солевой раствор выливали в особый резервуар - творило , откуда она через отверстия стекала в нижний резервуар, и системой жёлобов подавалась в деревянные башни. Там её разливали в большие чаны, на которых соль вываривали.

На Руси поморы вываривали соль на побережье Белого моря и называли её морянка . В 1137 году новгородский князь Святослав определил налог на соляные варницы :

Беломорской солью, называемой «морянкой», торговали по всей Российской империи до начала XX века, пока её не вытеснила более дешёвая поволжская соль.

Современная добыча хлорида натрия механизирована и автоматизирована. Соль массово добывается выпариванием морской воды (тогда её называют морской солью) или рассола с других ресурсов, таких как соляные источники и соляные озера, а также разработкой соляных шахт и добычей каменной соли.
Для добычи хлорида натрия из морской воды необходимы условия жаркого климата с низкой влажностью воздуха, наличие значительных низменных территорий, лежащих ниже уровня моря, или затопляемых приливом, слабая водопроницаемость почвы испарительных бассейнов, малое количество осадков в течение сезона активного испарения, отсутствие влияния пресных речных вод и наличие развитой транспортной инфраструктуры.

Мировое производство соли в 2009 году оценивается в 260 миллионов тонн. Крупнейшими мировыми производителями являются Китай (60,0 млн тонн), США (46,0 млн тонн), Германия (16,5 млн тонн), Индия (15,8 млн тонн) и Канада (14 млн тонн) .

Применение

В пищевой промышленности и кулинарии

Соль поваренная

В пищевой промышленности и кулинарии используют хлорид натрия, чистота которого должна быть не менее 97 %. Его применяют как вкусовую добавку и для консервирования пищевых продуктов. Такой хлорид натрия имеет товарное название поваренная соль , порой также употребляются названия пищевая, столовая, а также уточнение названия в зависимости от её происхождения - каменная, морская, и по составу добавок - йодированная, фторированная и т. д. Такая соль является кристаллическим сыпучим продуктом с солёным вкусом без привкуса, без запаха (за исключением йодированной соли), в котором не допускаются посторонние примеси, не связанные с методом добывания соли. Кроме хлорида натрия, поваренная соль содержит небольшое количество солей кальция, магния, калия, которые придают ей гигроскопичности и жёсткости. Чем меньше этих примесей в соли, тем выше её качество.

Выделяют сорта: экстра, высший, первый и второй. Массовая доля хлористого натрия в сортах, %:

  • экстра - не менее 99,5;
  • высший - 98,2;
  • первый - 97,5;
  • второй - 97,0.

Массовая доля влаги в выварочной соли сорта «экстра» 0,1 %, в высшем сорте - 0,7 %. Допускают добавки йодида калия (йодистого калия), йодата калия, фторидов калия и натрия. Массовая доля йода должна составлять (40,0 ± 15,0) × 10 −4 %, фтора (25,0 ± 5,0) × 10 −3 %. Цвет экстра и высшего сортов - белый, однако для первого и второго допускается серый, желтоватый, розовый и голубоватый оттенки в зависимости от происхождения соли. Пищевую поваренную соль производят молотой и сеяной. По размеру зёрен молотую соль подразделяют на номера: 0, 1, 2, 3. Чем больше номер, тем больше зерна соли.

В кулинарии хлорид натрия потребляют как важнейшую приправу. Соль имеет характерный вкус, без которого пища кажется человеку пресной. Такая особенность соли обусловлена физиологией человека. Однако зачастую люди потребляют соли больше, чем нужно для физиологических процессов.

В коммунальном хозяйстве. Техническая соль

Зимой хлорид натрия, смешанный с другими солями, песком или глиной - так называемая техническая соль - применяется как антифриз против гололёда. Ею посыпают тротуары, хотя это отрицательно влияет на кожаную обувь и техническое состояние автотранспорта ввиду коррозийных процессов.

Регенерация Nа-катионитовых фильтров

Nа-катионитовые фильтры широко применяются в установках умягчения воды всех мощностей при водоподготовке. Катионитным материалом на современных водоподготовительных установках служат в основном глауконит , полимерные ионообменные смолы и сульфированные угли. Наиболее распространены сульфокатионитные ионообменные смолы.

Регенерацию Nа-катионитовых фильтров осуществляют 6-10%-м раствором поваренной соли, в результате катионит переводится в Na-форму, регенерируется. Реакции идут по уравнениям:

C a R 2 + 2 N a C l → 2 N a R + C a C l 2 {\displaystyle {\mathsf {CaR_{2}+2NaCl\rightarrow 2NaR+CaCl_{2}}}} M g R 2 + 2 N a C l → 2 N a R + M g C l 2 {\displaystyle {\mathsf {MgR_{2}+2NaCl\rightarrow 2NaR+MgCl_{2}}}}

Химическая промышленность

Соль, наряду с каменным углем, известняками и серой, образует «большую четвёрку» продуктов минерального сырья, которые являются важнейшими для химической промышленности . Из неё получают соду, хлор, соляную кислоту, гидроксид натрия, сульфат натрия и металлический натрий. Кроме этого соль используется также для промышленного получения легкорастворимого в воде хлората натрия, который является средством для уничтожения сорняков . Суммарное уравнение реакции электролиза горячего раствора хлорида натрия :

N a C l + 3 H 2 O → N a C l O 3 + 3 H 2 {\displaystyle {\mathsf {NaCl+3H_{2}O\rightarrow NaClO_{3}+3H_{2}}}}

Получение хлора и гидроксида натрия

  • на катоде как побочный продукт выделяется водород вследствие восстановления ионов H + , образованных в результате электролитической диссоциации воды:
H 2 O ⇄ H + + O H − {\displaystyle {\mathsf {H_{2}O\rightleftarrows H^{+}+OH^{-}}}} 2 H + + 2 e − → H 2 {\displaystyle {\mathsf {2H^{+}+2e^{-}\rightarrow H_{2}}}}
  • поскольку (вследствие практически полной электролитической диссоциации NaCl), хлор в растворе находится в виде хлорид-ионов, они окисляются на аноде до свободного хлора в виде газа:
N a C l → N a + + C l − {\displaystyle {\mathsf {NaCl\rightarrow Na^{+}+Cl^{-}}}}
  • суммарная реакция:
2 N a C l + 2 H 2 O → 2 N a O H + C l 2 + H 2 {\displaystyle {\mathsf {2NaCl+2H_{2}O\rightarrow 2NaOH+Cl_{2}+H_{2}}}}

Как видно из уравнения суммарной реакции, ещё одним продуктом является гидроксид натрия. Расход электроэнергии на 1 т хлора составляет примерно 2700 кВт × час. Полученный хлор при повышенном давлении сжижается в жёлтую жидкость уже при обычной температуре .

Если между анодом и катодом нет диафрагмы, то растворённый в воде хлор начинает реагировать с гидроксидом натрия, образуя хлорид и гипохлорит натрия NaClO :

2 N a O H + C l 2 → N a C l + N a O C l + H 2 O {\displaystyle {\mathsf {2NaOH+Cl_{2}\rightarrow NaCl+NaOCl+H_{2}O}}} N a + + e − → N a (H g) {\displaystyle {\mathsf {Na^{+}+e^{-}\rightarrow Na_{(Hg)}}}}

Амальгаму позже разлагают горячей водой с образованием гидроксида натрия и водорода, а ртуть перекачивают насосом обратно в электролизер:

2 N a (H g) + 2 H 2 O → 2 N a O H + H 2 {\displaystyle {\mathsf {2Na_{(Hg)}+2H_{2}O\rightarrow 2NaOH+H_{2}}}}

Суммарная реакция процесса такая же, как и в случае диафрагменного метода.

Получение металлического натрия

Металлический натрий получают электролизом расплава хлорида натрия. Происходят следующие процессы:

  • на катоде выделяется натрий:
N a + + e − → N a {\displaystyle {\mathsf {Na^{+}+e^{-}\rightarrow Na}}}
  • на аноде выделяется хлор (как побочный продукт):
2 C l − → C l 2 + 2 e − {\displaystyle {\mathsf {2Cl^{-}\rightarrow Cl_{2}+2e^{-}}}}
  • суммарная реакция:
2 N a + + 2 C l − → 2 N a + C l 2 {\displaystyle {\mathsf {2Na^{+}+2Cl^{-}\rightarrow 2Na+Cl_{2}}}}

Ванна электролизера состоит из стального кожуха с футеровкой , графитового анода и кольцевого железного катода. Между катодом и анодом располагается сетчатая диафрагма. Для снижения температуры плавления NaCl (+800 °C), электролитом является не чистый хлорид натрия, а его смесь с хлоридом кальция CaCl 2 (40:60) с температурой плавления +580 °C. Металлический натрий, который собирается в верхней части катодного пространства, содержит до 5 % примесь кальция, но последний со временем почти полностью отделяется, поскольку его растворимость в жидком натрии при температуре его плавления (+371 K = 98 °C) составляет всего 0,01 %. С расходованием NaCl его постоянно добавляют в ванну. Затраты электроэнергии составляют примерно 15 кВт × ч на 1 кг натрия .

Получение соляной кислоты и сульфата натрия

Среди многих промышленных методов получения соляной кислоты, то есть водного раствора хлороводорода (HCl), применяется реакция обмена между хлоридом натрия и серной кислотой:

N a C l + H 2 S O 4 → N a H S O 4 + H C l {\displaystyle {\mathsf {NaCl+H_{2}SO_{4}\rightarrow NaHSO_{4}+HCl\uparrow }}} N a C l + N a H S O 4 → N a 2 S O 4 + H C l {\displaystyle {\mathsf {NaCl+NaHSO_{4}\rightarrow Na_{2}SO_{4}+HCl\uparrow }}}

Первая реакция происходит в значительной степени уже при обычных условиях, а при слабом нагреве идёт почти до конца. Вторая происходит лишь при высоких температурах. Процесс осуществляется в специальных механизированных печах большой мощности. Хлороводород , который выделяется, обеспыливают, охлаждают и поглощают водой с образованием соляной кислоты. Как побочный продукт образуется сульфат натрия Na 2 SO 4 .

Этот метод применяется также для получения хлороводорода в лабораторных условиях.

Физические и физико-химические свойства

Температура плавления +800,8 °С, кипения +1465 °С.

Умеренно растворяется в воде, растворимость мало зависит от температуры: коэффициент растворимости NaCl (в граммах на 100 г воды) равен 35,9 при +21 °C и 38,1 при +80 °C. Растворимость хлорида натрия существенно снижается в присутствии хлороводорода, гидроксида натрия, солей - хлоридов металлов. Растворяется в жидком аммиаке, вступает в реакции обмена. В чистом виде хлорид натрия не гигроскопичен. Однако соль часто бывает загрязнена примесями (преимущественно ионами Ca 2+ , Mg 2+ и SO2−
4 ), и такая соль на воздухе сыреет . Кристаллогидрат NaCl · 2H 2 O можно выделить при температуре ниже +0,15 °C .

Смесь измельчённого льда с мелким порошком хлорида натрия является эффективным охладителем. Так, смесь состава 30 г NaCl на 100 г льда охлаждается до температуры −20 °C. Это происходит потому, что водный раствор соли замерзает при температуре ниже 0 °C. Лёд, имеющий температуру около 0 °C, плавится в таком растворе, поглощая тепло окружающей среды.

Диэлектрическая проницаемость NaCl - 6,3

Плотность и концентрация водных растворов NaCl

Концентрация, % Концентрация, г/л Плотность, г/мл
1 10,05 1,005
2 20,25 1,012
4 41,07 1,027
6 62,47 1,041
8 84,47 1,056
10 107,1 1,071
12 130,2 1,086
14 154,1 1,101
16 178,5 1,116
18 203,7 1,132
20 229,5 1,148
22 256 1,164
24 283,2 1,18
26 311,2 1,197

Лабораторное получение и химические свойства

При действии серной кислоты выделяет хлороводород.

2 N a C l + H 2 S O 4 → N a 2 S O 4 + 2 H C l {\displaystyle {\mathsf {2NaCl+H_{2}SO_{4}\rightarrow Na_{2}SO_{4}+2HCl}}}

С раствором нитрата серебра образует белый осадок хлорида серебра (качественная реакция на хлорид-ион).

N a C l + A g N O 3 → N a N O 3 + A g C l {\displaystyle {\mathsf {NaCl+AgNO_{3}\rightarrow NaNO_{3}+AgCl}}}

В кристаллической решётке между атомами преобладает ионная химическая связь , что является следствием действия электростатического взаимодействия противоположных по заряду ионов.

См. также

  • Поваренная соль - специя и пищевая добавка
  • Галит - минерал

Примечания

  1. Натрия хлорид на сайте англ. National Institute of Standards and Technology ) (англ.)
  2. Некрасов Б. В. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп., М. : Химия , 1973. - 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 218
  3. Пифагор. Золотой канон. Фигуры эзотерики. - М. : Изд-во Эксмо, 2003. - 448 с. (Антология мудрости).
  4. Малая горная энциклопедия . В 3 т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого . - Донецк: Донбасс, 2004. - ISBN 966-7804-14-3 .
  5. УНИАН: Морская соль для красоты и здоровья кожи
  6. Российское законодательство Х-XX веков. Законодательство Древней Руси. Т. 1. М. , 1984. С. 224-225.
  7. В переводе с поморской «говори» слово чрен (црен) означает четырёхугольный ящик, кованный из листового железа, а салга - котёл, в котором варили соль. Пузом в беломорских солеварнях называли мешок соли в два четверика, то есть, объёмом около 52 литров.
  8. Соль (PDF) , Геологический обзор США на сайте Программы минеральных ресурсов (англ.)


© dagexpo.ru, 2024
Стоматологический сайт