Как работает и греет солнце. Что такое конвекция? Основные спектры солнечного излучения

21.09.2019

> Из чего состоит Солнце

Узнайте, из чего состоит Солнце : описание структуры и состава звезды, перечисление химических элементов, количество и характеристика слоев с фото, диаграмма.

С Земли, Солнце выглядит как гладкий огненный шар, и до открытия комическим кораблём Galileo пятен на Солнце, многие астрономы считали, что оно идеальной формы без дефектов. Теперь мы знаем, что Солнце состоит из нескольких слоёв, как и Земля, каждый из которых выполняет свою функцию. Эта структура Солнца, похожая на массивную печь, является поставщиком всей энергии на Земле, необходимой для земной жизни.

Из каких элементов состоит Солнце?

Если бы у вас получилось разложить звезду на части, и сравнить составные элементы, вы бы поняли, что состав представляет собою 74% водорода и 24% гелия. Также, Солнце состоит из 1% кислорода, и оставшийся 1% - это такие химические элементы таблицы Менделеева, как хром, кальций, неон, углерод, магний, сера, кремний, никель, железо. Астрономы полагают, что элемент тяжелее гелия – это металл.

Как появились все эти элементы Солнца? В результате Большого Взрыва появились водород и гелий. В начале становления Вселенной, первый элемент, водород, появился из элементарных частиц. Из-за большой температуры и давления условия во Вселенной были как в ядре звезды. Позже, водород синтезировался в гелий, пока во Вселенной была высокая температура, необходимая для протекания реакции синтеза. Существующие пропорции водорода и гелия, которые есть во Вселенной сейчас, сложились после Большого Взрыва и не изменялись.

Остальные элементы Солнца созданы в других звездах. В ядрах звезд постоянно происходит процесс синтеза водорода в гелий. После выработки всего кислорода в ядре, они переходят на ядерный синтез более тяжелых элементов, таких как литий, кислород, гелий. Многие тяжелые металлы, которые есть в Солнце, образовывались и в других звездах в конце их жизни.

Образование самых тяжелых элементов, золота и урана, происходило, когда звезды, во много раз больше нашего Солнца, детонировали. За доли секунды образования черной дыры, элементы сталкивались на большой скорости и образовывались самые тяжелые элементы. Взрыв раскидал эти элементы по всей Вселенной, где они помогли образоваться новым звездам.

Наше Солнце собрало в себя элементы, созданные Большим Взрывом, элементы от умирающих звезд и частицы появившихся в результате новых детонаций звезд.

Из каких слоев состоит Солнце

На первый взгляд, Солнце - просто шар, состоящий из гелия и водорода, но при более глубоком изучении видно, что оно состоит из разных слоев. При движении к ядру, температура и давление увеличиваются, в результате этого были созданы слои, так как при различных условиях водород и гелий имеют разные характеристики.

Солнечное ядро

Начнем наше движение по слоям от ядра к наружному слою состава Солнца. Во внутреннем слое Солнца – ядре, температура и давление очень высокие, способствующие для протекания ядерного синтеза. Солнце создает из водорода атомы гелия, в результате этой реакции образуется свет и тепло, которые доходят до . Принято считать, что температура на Солнце около 13,600,000 градусов по Кельвину, а плотность ядра в 150 раз выше плотности воды.

Ученые и астрономы считают, что ядро Солнца достигает около 20% длины солнечного радиуса. И внутри ядра, высокая температура и давление способствуют разрыву атомов водорода на протоны, нейтроны и электроны. Солнце преобразовывает их в атомы гелия, не смотря на их свободно плавающее состояние.

Такая реакция называется экзотермической. При протекании этой реакции выделяется большое количество тепла, равное 389 х 10 31 дж. в секунду.

Радиационная зона Солнца

Эта зона берет свое начало у границы ядра (20% солнечного радиуса), и достигает длины до 70% радиуса Солнца. Внутри этой зоны находится солнечное вещество, которое по своему составу достаточно плотное и горячее, поэтому тепловое излучение проходит через него, не теряя тепло.

Внутри солнечного ядра протекает реакция ядерного синтеза – создание атомов гелия в результате слияния протонов. В результате этой реакции происходит большое количество гамма-излучения. В данном процессе испускаются фотоны энергии, затем поглощаются в радиационной зоне и испускаются различными частицами вновь.

Траекторию движения фотона принято называть «случайным блужданием». Вместо движения по прямой траектории к поверхности Солнца, фотон движется зигзагообразно. В итоге, каждому фотону необходимо примерно 200.000 лет для преодоления радиационной зоны Солнца. При переходе от одной частицы к другой частице происходит потеря энергии фотоном. Для Земли это хорошо, ведь мы бы могли получать лишь гамма-излучение, идущее от Солнца. Фотону, попавшему в космос необходимо 8 минут для путешествия к Земле.

Большое количество звезд имеют радиационные зоны, и их размеры напрямую зависит от масштаба звезды. Чем меньше звезда, тем меньше будут зоны, большую часть которой будет занимать конвективная зона. У самых маленьких звезд могут отсутствовать радиационные зоны, а конвективная зона будет достигать расстояние до ядра. У самых больших звезд ситуация противоположная, радиационная зона простирается до поверхности.

Конвективная зона

Конвективная зона находится снаружи радиационной зоны, где внутреннее тепло Солнца перетекает по столбам горячего газа.

Почти все звезды имеют такую зону. У нашего Солнца она простирается от 70% радиуса Солнца до поверхности (фотосферы). Газ в глубине звезды, у самого ядра, нагреваясь, поднимается на поверхность, как пузырьки воска в лампадке. При достижении поверхности звезды, происходит потеря тепла, при охлаждении газ обратно погружается к центру, за возобновлением тепловой энергии. Как пример, можно привезти, кастрюля с кипящей водой на огне.

Поверхность Солнца похожа на рыхлую почву. Эти неровности и есть столбы горячего газа, несущие тепло к поверхности Солнца. Их ширина достигает 1000 км, а время рассеивания достигает 8-20 минут.

Астрономы считают, что звезды маленькой массы, такие как красные карлики, имеющие только конвективную зону, которая простирается до ядра. У них отсутствует радиационная зона, что нельзя сказать о Солнце.

Фотосфера

Единственный видимый с Земли слой Солнца – . Ниже этого слоя, Солнце становится непрозрачным, и астрономы используют другие методы для изучения внутренней части нашей звезды. Температуры поверхности достигает 6000 Кельвин, светится желто-белым цветом, видимым с Земли.

Атмосфера Солнца находится за фотосферой. Та часть Солнца, которая видна во время солнечного затмения, называется .

Строение Солнца в диаграмме

NASA специально разработало для образовательных потребностей схематическое изображение строения и состава Солнца с указанием температуры для каждого слоя:

  • (Visible, IR and UV radiation) – это видимое излучение, инфракрасное излучение и ультрафиолетовое излучение. Видимое излучение – это свет, которые мы видим приходящим от Солнца. Инфракрасное излучение – это тепло, которое мы ощущаем. Ультрафиолетовое излучение – это излучение, дающее нам загар. Солнце производит эти излучения одновременно.
  • (Photosphere 6000 K) – Фотосфера – это верхний слой Солнца, поверхность его. Температура 6000 Кельвин равна 5700 градусов Цельсия.
  • Radio emissions (пер. Радио эмиссия) – Помимо видимого излучения, инфракрасного излучения и ультрафиолетового излучения, Солнце отправляет радио эмиссию, которую астрономы обнаружили с помощью радиотелескопа. В зависимости от количества пятен на Солнце, эта эмиссия возрастает и снижается.
  • Coronal Hole (пер. Корональная дыра) – Это места на Солнце, где корона имеет небольшую плотность плазмы, в результате она темнее и холоднее.
  • 2100000 К (2100000 Кельвин) – Радиационная зона Солнца имеет такую температуру.
  • Convective zone/Turbulent convection (пер. Конвективная зона/Турбулентная конвекция) – Это места на Солнце, где тепловая энергия ядра передается с помощью конвекции. Столбы плазмы доходят до поверхности, отдают своё тепло, и вновь устремляются вниз, чтоб вновь нагреться.
  • Coronal loops (пер. Корональные петли) – петли, состоящие из плазмы, в атмосфере Солнца, движущиеся по магнитным линиям. Они похожи на огромные арки, простирающиеся от поверхности на десятки тысяч километров.
  • Core (пер. Ядро) – это солнечное сердце, в котором происходит ядерный синтез, при помощи высокой температуры и давления. Вся солнечная энергия происходит из ядра.
  • 14,500,000 К (пер. 14,500,000 Кельвин) – Температура солнечного ядра.
  • Radiative Zone (пер. Радиационная зона) – Слой Солнца, где энергия передается при помощи радиации. Фотон преодолевает радиационную зону за 200.000 и выходит в открытый космос.
  • Neutrinos (пер. Нейтрино) – это ничтожно маленькие по массе частицы, исходящие из Солнца в результате реакции ядерного синтеза. Сотни тысяч нейтрино проходят через тело человека ежесекундно, но никакого вреда нам не приносят, мы их не чувствуем.
  • Chromospheric Flare (пер. Хромосферная вспышка) – Магнитное поле нашей звезды может закручиваться, а потом резко разрывается в различных формах. В результате разрывов магнитных полей появляются мощные рентгеновские вспышки, исходящие из поверхности Солнца.
  • Magnetic Field Loop (пер. Петля магнитного поля) – Магнитное поле Солнца находится над фотосферой, и видно, так как раскаленная плазма движется по магнитным линиям в атмосфере Солнца.
  • Spot– A sunspot (пер. Солнечные пятна) – Это места на поверхности Солнца, где магнитные поля проходят через поверхность Солнца, и на них температура ниже, часто в виде петли.
  • Energetic particles (пер. Энергичные частицы) – Они исходят из поверхности Солнца, в результате создается солнечный ветер. В солнечных бурях их скорость достигает скорости света.
  • X-rays (пер. Рентгеновские лучи) – невидимые для глаза человека лучи, образующиеся во вспышек на Солнце.
  • Bright spots and short-lived magnetic regions (пер. Яркие пятна и недолгие магнитные регионы) – Из-за перепада температур на поверхности Солнца появляются яркие и тусклые пятна.

Солнце излучает свою энергию во всех длинах волн, но по-разному. Приблизительно 44% энергии излучения приходится на видимую часть спектра, а максимум соответствует желто-зеленому цвету. Около 48% энергии, теряемой Солнцем, уносят инфракрасные лучи ближнего и дальнего диапазона. На гамма-лучи, рентгеновское, ультрафиолетовое и радио излучение приходится лишь около 8%.

Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные Й.Фраунгофером в 1814 году. Эти линии возникают при поглощении фотонов определенных длин волн атомами различных химических элементах в верхних, относительно холодных, слоях атмосферы Солнца. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, например, с помощью наблюдений спектра Солнца было предсказано открытие гелия, который на Земле был выделен позже.

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли.

Кандидат физико-математических наук Е. ЛОЗОВСКАЯ.

С наступлением теплых летних дней нас так и тянет погреться на солнышке. Солнечный свет улучшает настроение, стимулирует образование в коже жизненно необходимого витамина D, но в то же время, к сожалению, способствует появлению морщин и увеличивает риск развития рака кожи. Значительная часть как полезных, так и вредных эффектов связана с той частью солнечного излучения, которая невидима для человеческого глаза, - ультрафиолетом.

Спектр электромагнитного излучения и спектр солнца. Граница между ультрафиолетом В и С соответствует пропусканию земной атмосферы.

Ультрафиолет вызывает различные повреждения молекул ДНК в живых организмах.

Интенсивность ультрафиолета B зависит от широты и времени года.

Одежда из хлопка служит хорошей защитой от ультрафиолета.

Солнце служит главным источником энергии для нашей планеты, а поступает эта энергия в виде излучения - инфракрасного, видимого и ультрафиолетового. Ультрафиолетовая область расположена за коротковолновой границей видимого спектра. Когда речь идет о влиянии на живые организмы, в ультрафиолетовом спектре солнца обычно выделяют три области: ультрафиолет А (УФ-А; 320-400 нанометров), ультрафиолет В (УФ-В; 290-320 нм) и ультрафиолет С (УФ-С; 200-290 нм). Деление это достаточно произвольно: граница между УФ-В и УФ-С выбрана из тех соображений, что свет с длиной волны менее 290 нм не достигает поверхности Земли, поскольку земная атмосфера, благодаря кислороду и озону, выполняет роль эффективного природного светофильтра. Граница между УФ-В и УФ-А основана на том, что излучение короче 320 нм вызывает гораздо более сильную эритему (покраснение кожи), чем свет в диапазоне 320-400 нм.

Спектральный состав солнечного света во многом зависит от времени года, погоды, географической широты и высоты над уровнем моря. Например, чем дальше от экватора, тем сильнее коротковолновая граница сдвигается в сторону длинных волн, поскольку в этом случае свет падает на поверхность под косым углом и проходит большее расстояние в атмосфере, а значит, сильнее поглощается. На положение коротковолновой границы влияет и толщина озонового слоя, поэтому под "озоновыми дырами" на поверхность Земли попадает больше ультрафиолета.

В полдень интенсивность излучения на длине волны 300 нм в 10 раз выше, чем за три часа до этого или три часа спустя. Облака рассеивают ультрафиолет, но только темные тучи способны блокировать его полностью. Ультрафиолетовые лучи хорошо отражаются от песка (до 25%) и снега (до 80%), хуже от воды (менее 7%). Поток ультрафиолета возрастает с высотой, приблизительно на 6% с каждым километром. Соответственно в местах, расположенных ниже уровня моря (например, у берегов Мертвого моря), интенсивность излучения меньше.

ЖИЗНЬ ПОД СОЛНЦЕМ

Без света жизнь на Земле не могла бы существовать. Растения используют солнечную энергию, запасают ее с помощью фотосинтеза и обеспечивают энергией через пищу всех остальные живые существа. Человеку и другим животным свет обеспечивает возможность видеть окружающий мир, регулирует биологические ритмы организма.

Эту жизнерадостную картину немного осложняет ультрафиолет, поскольку его энергии достаточно, чтобы вызвать серьезные повреждения ДНК. Ученые насчитывают более двух десятков различных болезней, которые возникают или усугубляются под действием солнечного света, среди них пигментная ксеродерма, плоскоклеточный рак кожи, базалиома, меланома, катаракта.

Конечно, в процессе эволюции наш организм выработал механизмы защиты от ультрафиолета. Первый барьер, который преграждает потенциально опасному излучению доступ в организм, - кожа. Практически весь ультрафиолет поглощается в эпидермисе, наружном слое кожи толщиной 0,07-0,12 мм. Чувствительность к свету во многом определяется наследственной способностью организма производить меланин, темный пигмент, который поглощает свет в эпидермисе и тем самым защищает более глубокие слои кожи от фотоповреждений. Меланин вырабатывают особые клетки кожи - меланоциты. Ультрафиолетовое облучение стимулирует выработку меланина. Наиболее интенсивно этот биологический пигмент образуется при облучении светом УФ-В диапазона. Правда, эффект проявляется не сразу, а спустя 2-3 дня после пребывания на солнце, зато сохраняется в течение 2-3 недель. При этом ускоряется деление меланоцитов, возрастает число меланосом (гранул, содержащих меланин), увеличивается их размер. Свет УФ-А диапазона тоже способен вызывать загар, но более слабый и менее стойкий, поскольку число меланосом не увеличивается, а происходит лишь фотохимическое окисление предшественника меланина в меланин.

По восприимчивости к солнечным лучам выделяют шесть типов кожи. Кожа типа I очень светлая, она легко обгорает и совсем не покрывается загаром. Кожа типа II легко обгорает и покрывается слабым загаром. Кожа типа III быстро покрывается загаром и обгорает в меньшей степени. Кожа типа IV еще более устойчива к солнечным лучам. Кожа типов V и VI темная от природы (например, у коренных жителей Австралии и Африки) и почти не подвержена повреждающему действию солнца. У представителей негроидной расы риск развития немеланомного рака кожи ниже в 100 раз, а меланомы - в 10 раз по сравнению с европейцами.

Наиболее уязвимы к действию ультрафиолета люди с очень светлой кожей. У них даже кратковременное пребывание на ярком солнце вызывает эритему - покраснение кожи. За возникновение эритемы отвечает в основном УФ-В излучение. В качестве меры действия ультрафиолета на организм часто используют такое понятие, как минимальная эритемная доза (МЭД), то есть такая, при которой глазом заметно слабое покраснение. На самом деле величина МЭД различна не только у разных людей, но и у одного человека на разных участках тела. Например, для кожи живота белого незагорелого человека величина МЭД составляет около 200 Дж/м 2 , а на ногах - в три с лишним раза выше. Эритема обычно возникает через несколько часов после облучения. В тяжелых случаях развивается настоящий солнечный ожог с волдырями.

Какие вещества в эпидермисе кроме меланина поглощают ультрафиолет? Нуклеиновые кислоты, аминокислоты триптофан и тирозин, уроканиновая кислота. Наиболее опасны для организма повреждения нуклеиновых кислот. Под действием света в диапазоне УФ-В образуются димеры за счет ковалентных связей между соседними пиримидиновыми (цитозином или тимином) основаниями. Поскольку пиримидиновые димеры не вписываются в двойную спираль, эта часть ДНК теряет способность к выполнению своих функций. Если повреждения небольшие, специальные ферменты вырезают дефектный участок (и это еще один довольно эффективный механизм защиты). Однако, если ущерб больше, чем способность клетки к ремонту, клетка гибнет. Внешне это проявляется в том, что обожженная кожа "слезает". Повреждение ДНК может приводить к мутациям и как следствие - к раковым заболеваниям. Происходят и другие повреждения молекул, например образуются сшивки ДНК с белками. Кстати, видимый свет способствует залечиванию повреждений нуклеиновых кислот (это явление называется фотореактивацией). Предотвращать опасные последствия фотохимических реакций помогают антиоксиданты, содержащиеся в организме.

Еще одно следствие ультрафиолетового облучения - подавление иммунитета. Возможно, такая реакция организма призвана ослабить воспаление, вызванное солнечным ожогом, однако при этом снижается устойчивость к инфекциям. Сигналом для подавления иммунитета служат фотохимические реакции уроканиновой кислоты и ДНК.

МОДА НА ЗАГАР - СИМВОЛ ИНДУСТРИАЛЬНОГО ОБЩЕСТВА

Долгое время белая кожа считалась отличительной чертой знатных и богатых: сразу было видно, что ее обладателям не приходится с утра до ночи работать в поле. Но в ХХ веке все изменилось, бедные слои населения теперь проводили целые дни на заводах и фабриках, а богатые могли позволить себе отдыхать на свежем воздухе, у моря, демонстрируя красивый золотистый загар. После Второй мировой войны мода на загар приобрела массовый характер; загорелая кожа стала считаться признаком не только достатка, но и отменного здоровья. Разрослась туристическая индустрия, предлагающая отдых у моря в любое время года. Но прошло некоторое время, и врачи забили тревогу: оказалось, у любителей загара частота рака кожи возросла в несколько раз. И в качестве спасительного средства было предложено всем без исключения пользоваться солнцезащитными кремами и лосьонами, в состав которых входят вещества, отражающие или поглощающие ультрафиолет.

Известно, что еще во времена Колумба индейцы имели обыкновение раскрашивать себя красной краской, чтобы защититься от солнца. Возможно, древние греки и римляне использовали для этих целей смесь песка с растительным маслом, поскольку песок отражал солнечные лучи. Применение химических солнцезащитных средств началось в 1920-х годах, когда в качестве солнцезащитного средства была запатентована парааминобензойная кислота (ПАБК). Однако она растворялась в воде, так что защитный эффект исчезал после купания, и к тому же раздражала кожу. В 1970-е годы на смену ПАБК пришли ее эфиры, почти нерастворимые в воде и не вызывающие сильного раздражения. Настоящий бум в области солнцезащитной косметики начался в 1980-е годы. Поглощающие ультрафиолет вещества (в косметологии за ними закрепилось название "УФ-фильтры") стали добавлять не только в специальные "пляжные" кремы, но и почти во все косметические продукты, предназначенные для использования в дневное время: крем, жидкую пудру, губную помаду.

По принципу действия УФ-фильтры можно разделить на две группы: отражающие свет ("физические") и поглощающие ("химические"). К отражающим средствам относятся разного рода минеральные пигменты, прежде всего диоксид титана, оксид цинка, силикат магния. Принцип их действия прост: они рассеивают ультрафиолет, не давая ему проникнуть в кожу. Окись цинка захватывает область длин волн от 290 до 380 нм, остальные - несколько меньше. Основной недостаток отражающих средств тот, что они представляют собой порошок, непрозрачны и придают коже белый цвет.

Естественно, что производителей косметики больше привлекали прозрачные и хорошо растворимые "химические" УФ-фильтры (известные в фотохимии как УФ-абсорберы). К ним относятся уже упоминавшаяся ПАБК и ее эфиры (сейчас их почти не используют, так как появились сведения, что они разлагаются с образованием мутагенов), салицилаты, производные коричной кислоты (циннаматы), антраниловые эфиры, оксибензофеноны. Принцип действия УФ-абсорбера заключается в том, что, поглотив квант ультрафиолета, его молекула изменяет свою внутреннюю структуру и преобразует энергию света в тепло. Наиболее эффективные и светостойкие УФ-абсорберы работают по внутримолекулярному циклу переноса протона.

Большинство УФ-абсорберов поглощают свет только в УФ-В области. Обычно солнцезащитные средства содержат не один УФ-фильтр, а несколько, как физических, так и химических. Общее содержание УФ-фильтров может превышать 15 процентов.

Для характеристики защитной эффективности кремов, лосьонов и прочей косметической продукции стали использовать так называемый солнцезащитный фактор (по-английски "sun protection factor", или SPF). Идея солнцезащитного фактора была впервые предложена в 1962 году австрийским ученым Францем Грайтером и принята представителями косметической и фармацевтической промышленности. Солнцезащитный фактор определяется как отношение минимальной дозы ультрафиолета, необходимой для возникновения эритемы при действии на защищенную кожу, к дозе, вызывающей такой же эффект при незащищенной коже. Получила широкое распространение популярная интерпретация: если без защиты вы обгораете за 20 минут, то, намазав кожу кремом с защитным фактором, скажем, 15, получите солнечный ожог только пробыв на солнце в 15 раз дольше, то есть через 5 часов.

ОБМАНЧИВОЕ ЧУВСТВО ЗАЩИТЫ

Казалось бы, решение проблемы ультрафиолета найдено. Но на деле все не так просто. В научной литературе стали появляться сообщения, что у людей, которые постоянно пользуются солнцезащитными препаратами, частота возникновения таких разновидностей рака кожи, как меланома и базалиома, не только не снизилась, но и возросла. Было предложено несколько объяснений этого обескураживающего факта.

Первым делом ученые предположили, что потребители неправильно пользуются солнцезащитными средствами. При тестировании кремов принято наносить на кожу 2 мг крема на 1 см 2 . Но, как показали исследования, люди часто наносят более тонкий слой, в 2-4 раза меньше, соответственно уменьшается и фактор защиты. Кроме того, кремы и лосьоны частично смываются водой, например во время купания.

Нашлось и другое объяснение. Как уже отмечалось, большинство химических УФ-абсорберов (а именно они наиболее широко используются в косметике) поглощают свет только в УФ-В области, предотвращая развитие солнечного ожога. Но, по некоторым данным, меланома возникает под действием УФ-А излучения. Не пропуская УФ-В излучение, солнцезащитные средства блокируют природный предупреждающий сигнал - покраснение кожи, замедляют образование защитного загара, и в результате человек получает избыточную дозу в области УФ-А, которая как раз и может спровоцировать рак.

Результаты опросов показывают, что те, кто пользуется кремами с более высоким фактором защиты, проводят на солнце больше времени, а значит, неосознанно подвергают себя большему риску.

Нельзя забывать и о том, что смесь химических веществ, которые входят в состав защитных кремов, при длительном воздействии ультрафиолета может стать источником свободных радикалов - инициаторов окисления биомолекул. Некоторые из УФ-фильтров потенциально токсичны либо вызывают аллергию.

"СОЛНЕЧНЫЙ" ВИТАМИН

Настало время вспомнить о том, что поми-мо многочисленных негативных эффектов ультрафиолета есть и позитивные. И самый яркий пример - фотосинтез витамина D 3 .

В эпидермисе содержится довольно много 7-дигидрохолестерола, предшественника витамина D 3 . Облучение светом УФ-В диапазона запускает цепочку реакций, в результате которых и получается холекальциферол (витамин D 3), пока еще не активный. Это вещество связывается с одним из белков крови и переносится в почки. Там оно превращается в активную форму витамина D 3 - 1, 25-дигидроксихолекальциферол. Витамин D 3 необходим для всасывания кальция в тонком кишечнике, нормального фосфорно-кальциевого обмена и образования костей, при его недостатке у детей развивается тяжелое заболевание - рахит.

После облучения всего тела в дозе 1 МЭД концентрация витамина D 3 в крови возрастает в 10 раз и возвращается к прежнему уровню через неделю. Применение солнцезащитных средств подавляет синтез витамина D 3 в коже. Дозы, необходимые для его синтеза, невелики. Считается достаточным ежедневно проводить на солнце примерно по 15 минут, подставляя солнечным лучам лицо и руки. Суммарная годовая доза, необходимая для поддержания уровня витамина D 3 , составляет 55 МЭД.

Хронический дефицит витамина D 3 приводит к ослаблению костной ткани. К группе риска относятся темнокожие дети, живущие в северных странах, и пожилые люди, которые мало бывают на свежем воздухе. Некоторые исследователи считают, что увеличение частоты заболеваемости раком при использовании солнцезащитных средств связано именно с блокировкой синтеза витамина D 3 . Не исключено, что его дефицит приводит к возрастанию риска рака толстой кишки и молочной железы.

Другие полезные эффекты ультрафиолета связаны в основном с медициной. Ультрафиолетом лечат такие заболевания, как псориаз, экзема, розовый лишай. Датский врач Нильс Финсен в 1903 году получил Нобелевскую премию за применение ультрафиолета в лечении волчаночного туберкулеза кожи. Метод облучения крови ультрафиолетом сейчас успешно применяют для лечения воспалительных и других заболеваний.

СОЛОМЕННАЯ ШЛЯПКА ОТ ЗАГАРА

Вопрос о том, полезен или вреден ультрафиолет, не имеет однозначного ответа: и да, и нет. Многое зависит от дозы, спектрального состава и особенностей организма. Избыток ультрафиолета безусловно опасен, но на защитные кремы полностью полагаться нельзя. Требуются дополнительные исследования, чтобы установить, в какой степени употребление солнцезащитных средств может способствовать развитию раковых заболеваний.

Лучшее средство уберечь кожу от солнечного ожога, преждевременного старения, а заодно и снизить риск развития рака - одежда. Для обычной летней одежды характерны защитные факторы выше 10. Хорошими защитными свойствами обладает хлопок, правда в сухом виде (при намокании он пропускает больше ультрафиолета). Не забудьте про шляпу с широкими полями и солнцезащитные очки.

Рекомендации достаточно просты. Избегайте бывать на солнце в самые жаркие часы. Будьте особенно осторожны с солнцем, если принимаете лекарства, обладающие свойствами фотосенсибилизаторов: сульфаниламиды, тетрациклины, фенотиазины, фторхинолоны, нестероидные противовоспалительные препараты и некоторые другие. Фотосенсибилизаторы входят и в состав некоторых растений, например зверобоя (см. "Наука и жизнь" № 3, 2002 г.). Усиливать действие света могут ароматические вещества, входящие в состав косметики и духов.

Учитывая, что у ученых есть сомнения в эффективности и безопасности солнцезащитных кремов и лосьонов, не пользуйтесь ими (а также дневной косметикой с высоким содержанием УФ-фильтров) без особой необходимости. Если такая необходимость возникла, отдавайте предпочтение тем средствам, что обеспечивают защиту в широком спектре - от 280 до 400 нм. Как правило, такие кремы и лосьоны содержат окись цинка или другие минеральные пигменты, поэтому имеет смысл внимательно прочесть состав на этикетке.

Защита от солнца должна быть индивидуальной, в зависимости от места жительства, сезона и типа кожи.

Солнце играет важную роль для нас на Земле. Оно обеспечивает планету и все, что на ней находится важными факторами, такими как свет и тепло. Но что такое солнечное излучение, спектр солнечного света, как все это влияет на нас и на глобальный климат в целом?

Что такое солнечная радиация?

Плохие мысли обычно приходят на ум, когда вы думаете о слове "радиация". Но солнечная радиация на самом деле очень хорошая вещь - это солнечный свет! Каждое живое существо на Земле зависит от него. Он необходим для выживания, согревает планету, обеспечивает питание для растений.

Солнечное излучение - это весь свет и энергия, которые исходят от солнца, и есть много различных его форм. В электромагнитном спектре различают различные типы световых волн, излучаемых солнцем. Они похожи на волны, которые вы видите в океане: они перемещаются вверх и вниз и из одного места в другое. Спектр солнечного изучения может иметь разную интенсивность. Различают ультрафиолетовое, видимое и инфракрасное излучение.

Свет - движущаяся энергия

Спектр солнечного излучения образно напоминает клавиатуру пианино. Один ее конец имеет низкие ноты, в то время как другой - высокие. То же самое относится и к электромагнитному спектру. Один конец имеет низкие частоты, а другой - высокие. Низкочастотные волны являются длинными в течение заданного периода времени. Это такие вещи, как радар, телевизор и радиоволны. Высокочастотные излучения - это высокоэнергетические волны с короткой длиной. Это означает, что длина самой волны очень коротка для данного периода времени. Это, например, гамма-лучи, рентгеновские и ультрафиолетовые лучи.

Вы можете думать об этом так: низкочастотные волны похожи на подъем на холм с постепенным поднятием, в то время как высокочастотные волны похожи на быстрый подъем на крутой, почти вертикальный холм. При этом высота каждого холма одинакова. Частота электромагнитной волны определяет, сколько энергии она несет. Электромагнитные волны, которые имеют большую длину и, следовательно, более низкие частоты, несут гораздо меньше энергии, чем с более короткими длинами и более высокими частотами.

Вот почему рентгеновские лучи и могут быть опасными. Они несут так много энергии, что, если попадают в ваше тело, могут повредить клетки и вызвать проблемы, такие как рак и изменение в ДНК. Такие вещи, как радио и инфракрасные волны, которые несут гораздо меньше энергии, на самом деле не оказывают на нас никакого влияния. Это хорошо, потому что вы, конечно, не хотите подвергать себя риску, просто включив стерео.

Видимый свет, который мы и другие животные можем видеть нашими глазами, расположен почти в середине спектра. Мы не видим никаких других волн, но это не значит, что их там нет. На самом деле, насекомые видят ультрафиолетовый свет, но не наш видимый. Цветы выглядят для них совсем по-другому, чем для нас, и это помогает им знать, какие растения посетить и от каких из них держаться подальше.

Источник всей энергии

Мы принимаем солнечный свет как должное, но так не обязано быть, потому что, по сути, вся энергия на Земле зависит от этой большой, яркой звезды в центре нашей Солнечной системы. И пока мы находимся в ней, мы должны также сказать спасибо нашей атмосфере, потому что она поглощает часть излучения, прежде чем оно достигнет нас. Это важный баланс: слишком много солнечного света, и на Земле становится жарко, слишком мало - и она начинает замерзать.

Проходя через атмосферу, спектр солнечного излучения у поверхности Земли дает энергию в разных формах. Для начала рассмотрим различные способы ее передачи:

  1. Проводимость (кондукция) - это когда энергия передается от прямого контакта. Когда вы обжигаете руку горячей сковородой, потому что забыли надеть прихватку, это проводимость. Посуда передает тепло вашей руке через прямой контакт. Кроме того, когда ваши ноги касаются холодной плитки в ванной утром, они переносят тепло на пол через прямой контакт - проводимость в действии.
  2. Рассеивание - это, когда энергия передается через токи в жидкости. Это также может быть и газ, но процесс в любом случае будет такой же. Когда жидкость нагрета, молекулы возбуждены, разрозненны и менее плотные, поэтому они стремятся вверх. Когда они остывают, снова падают вниз, создавая клеточный текущий путь.
  3. - это, когда энергия передается в виде электромагнитных волн. Подумайте о том, как хорошо сидеть рядом с костром и чувствовать, как приветственное тепло излучается от него к вам - это радиация. Радиоволны, световые и могут путешествовать, перемещаясь из одного места в другое без помощи каких-либо материалов.

Основные спектры солнечного излучения

Солнце обладает разным излучением: от рентгеновских лучей до радиоволн. Солнечная энергия - это свет и тепло. Его состав:

  • 6-7 % ультрафиолетового света,
  • около 42 % видимого света,
  • 51 % ближнего инфракрасного.

Мы получаем солнечной энергии при интенсивности 1 киловатт на квадратный метр на уровне моря в течение многих часов в день. Около половины излучения находится в видимой коротковолновой части электромагнитного спектра. Другая половина - в ближней инфракрасной, и немного в ультрафиолетовом отделе спектра.

Ультрафиолетовое излучение

Именно ультрафиолетовое излучение в солнечном спектре имеет интенсивность большую, чем другие: до 300-400 нм. Часть этого излучения, которое не поглощается атмосферой, производит загар или солнечный ожог для людей, которые были в солнечном свете в течение длительных периодов времени. Ультрафиолетовое излучение в солнечном свете имеет как положительные, так и отрицательные последствия для здоровья. Он является основным источником витамина D.

Видимое излучение

Видимое излучение в солнечном спектре имеет интенсивность среднего уровня. Количественные оценки потока и вариации его спектрального распределения в видимом и ближнем инфракрасном диапазонах электромагнитного спектра представляют большой интерес при изучении солнечно-наземных воздействий. Диапазон от 380 до 780 нм виден невооруженным взглядом.

Причина в том, что основная часть энергии солнечной радиации сосредоточена в этом диапазоне и она определяет тепловое равновесие атмосферы Земли. Солнечный свет является ключевым фактором в процессе фотосинтеза, используемого растениями и другими автотрофными организмами для преобразования световой энергии в химическую, которая может быть использована в качестве топлива для организма.

Инфракрасное излучение

Инфракрасный спектр, который охватывает от 700 нм до 1 000 000 нм (1мм), содержит важную часть электромагнитного излучения, которое достигает Земли. Инфракрасное излучение в солнечном спектре имеет интенсивность трех видов. Ученые делят этот диапазон на 3 типа на основе длины волны:

  1. A: 700-1400 нм.
  2. B: 1400-3000 нм.
  3. C: 3000-1 мм.

Заключение

Многие животные (включая человека) имеют чувствительность в диапазоне от приблизительно 400-700 нм, и полезный спектр цветового зрения у человека, например, составляет примерно 450-650 нм. Помимо эффектов, которые возникают на закате и восходе солнца, спектральный состав изменяется, в первую очередь, по отношению к тому, как непосредственно солнечный свет попадает на землю.

Каждые две недели Солнце снабжает нашу планету таким количеством энергии, что ее хватает всем жителям на целый год. В связи с этим все чаще солнечное излучение рассматривают, как альтернативный источник энергии.

Основная часть солнечной энергии достигает земли в виде трех составляющих: видимого света (40 %) и инфракрасного излучения (50 %), ультрафиолета (10 %). Наиболее значимой и хорошо изученной частью солнечного излучения являются ультрафиолетовые лучи. Они представлены тремя типами различных по длине волн и обозначаются буквами латинского алфавита: UVC-лучи — самые короткие (190-280 нм). UVB-лучи — средневолновые (280-320 нм) и UVA-лучи — длинноволновые (320-400 нм). Говоря о воздействии ультрафиолета на человека, подразумевают воздействие UVB- и UVA-лучей. Короткие UVC-лучи практически полностью поглощаются озоновым слоем атмосферы, как и короткие и очень активные космические γ-лучи. Эти лучи губительны для всего живого на поверхности земли, поэтому проблема целостности озонового слоя вызывает обеспокоенность ученых всего мира. Искусственные UVC-лучи используют для обеззараживания помещений.

UVB-лучи больше рассеиваются при прохождении через атмосферные слои, чем UVA, с увеличением географической широты уровень UVB-излучения уменьшается. Кроме того, его интенсивность зависит от времени года и существенно меняется в течение дня.

Большая часть UVB поглощается озоновым слоем, в отличие от UVA, и его доля во всей энергии ультрафиолетового излучения в летний полдень составляет около 3 %.

Различна и проникающая способность через барьер кожного покрова. Так, UVB-лучи на 70 % отражаются роговым слоем, на 20 % ослабляются при прохождении через эпидермис, дермы достигают лишь 10 %. UVA-лучи за счет поглощения, отражения и рассеивания с меньшими потерями проникают в дерму — 20-30 % и около 1 % от общей энергии достигает подкожной клетчатки.

Длительное время считалось, что доля UVB-лучей в повреждающем действии ультрафиолета составляет 80 %, поскольку именно этот спектр отвечает за возникновение эритемы солнечного ожога. На сегодняшний день известен целый ряд биологических эффектов солнечной радиации с преимущественным значением разных диапазонов ультрафиолета. Потемнение меланина (легкий и быстро проходящий загар) возникает под влиянием UVA уже через несколько часов и связан с фотооксидацией уже имеющегося меланина и его быстрым перераспределением по отросткам меланоцитов в эпидермальные клетки. Замедленный загар развивается через 3 дня и вызывается действием UVB-лучей. Он обусловлен активным синтезом меланина в меланосомах, увеличением количества меланоцитов и активизацией синтетических процессов в ранее неактивных меланоцитах. Замедленный загар более устойчив.

Синтез витамина D 3 происходит под воздействием UVB-лучей. Достаточным считается ежедневная экспозиция лица и рук в течение примерно 15 мин, по данным ВОЗ. Необходимо учитывать и географический фактор, поскольку на некоторых широтах высокий уровень UVA-облучения и низкий UVB-лучей, что может быть недостаточным для синтеза витамина D 3 .

Сильное воздействие ультрафиолета проявляется в виде солнечной эритемы и/или ожога. Эритематогенными являются UVB-лучи. Часто для оценки эффекта UV-облучения используется термин «минимальная эритемная доза» (МЭД) — энергетическая экспозиция UV-излучения, вызывающая едва заметную эритему необлученной ранее кожи. Для светлой кожи 1 МЭД равна 200-300 Дж/м 2 . Однако величина излучения, необходимая для развития эритемы, является сугубо индивидуальной и зависит от типа кожи, ее физиологической чувствительности к солнечным лучам.

Действие UVB на нормальную, не привыкшую к солнцу кожу вызывает фотозащитную реакцию — синтез меланина меланоцитами, увеличение количества меланосом. Это ограничивает поступление ультрафиолета до базального слоя и до меланоцитов. Наряду с этим наблюдается гиперплазия эпидермиса за счет пролиферации кератиноцитов, что также приводит к рассеиванию и ослаблению UV-излучения. Данные изменения носят адаптационный характер и позволяют коже выдерживать последующее облучение.

UVA-облучение не вызывает солнечных ожогов. Однако при длительной экспозиции (месяцы, годы) именно эти лучи вызывают появление признаков фотостарения, а также UV-индуцированный канцерогенез. UVA — это основной фактор цитотоксического воздействия солнечного света в базальном слое эпидермиса, за счет образования свободных радикалов и повреждения цепей ДНК. Поскольку UVA-излучение не способствует утолщению эпидермиса, вызываемый им загар малоэффективен в качестве защиты от последующего излучения.

Известно воздействие ультрафиолета на иммунитет. Ряд исследователей предполагают, что UV-облучение подавляет реакции иммунной системы человека. UVA- и UVB-излучение может активировать вирус герпеса. Экспериментальные данные о возможной активации ВИЧ, по данным ВОЗ, не подтвердились. Однако при недостатке ультрафиолета также отмечается снижение иммунитета (уменьшается титр комплемента, активность лизоцима и др.). Применение профилактических курсов UV-излучения в условиях его дефицита (в северных широтах) обладает выраженным адаптационным действием.

Клетки Лангерганса (мигрирующие дентритные клетки) играют роль в иммунологическом распознавании и чрезвычайно чувствительны к ультрафиолету. Их функция нарушается при достижении субэритемных доз облучения (1/2 МЭД). Обращает на себя внимание и более длительный срок восстановления популяции этих клеток после UVA-облучения (2-3 нед), нежели после UVB (48 ч).

Считается, что достоверно установлено влияние UV-излучения на частоту возникновения рака кожи. Относительно влияния UV на возникновение меланомы мнения специалистов расходятся. Часто отмечается преимущественное развитие меланом на открытых участках тела, подвергшихся избыточному воздействию солнечного света. Заболеваемость меланомой продолжает расти, причем в одних и тех же географических районах темнокожее население болеет реже. В Европе заболеваемость и смертность гораздо выше, нежели в северных странах.

Парадоксально, что смертность от меланомы снижается при увеличении дозы UVB. Такое положительное влияние может быть связано как со стимуляцией фотозащитного эффекта, так и с синтезом витамина D. Онкологи рассматривают гормональную форму vit D 3 -кальцитриол, синтезируемый в почках, как фактор, регулирующий дифференцировку и пролиферацию опухолевых клеток. Необходимая доза для синтеза vitD3 невелика и составляет около 55 МЭД в год.

Среди факторов естественной фотозащиты человека особое место принадлежит меланину. Количество и качество меланина определяет устойчивость к ультрафиолетовому воздействию и сопряжено с цветом кожи, волос, глаз. Активность меланогенеза и способность кожи к загару легли в основу деления людей на фототипы.

Тип 1 — всегда обгорают, никогда не загорают (рыжие, альбиносы);

Тип 2 — иногда обгорают, с трудом добиваются загара (блондины);

Тип 3 — иногда обгорают, могут загореть (европеоиды);

Тип 4 — обгорают только небольшие участки, всегда загорают (азиаты, индейцы);

Тип 5 — обгорают редко, приобретают интенсивный загар (дравиды, австралийские аборигены);

Тип 6 — никогда не обгорают, сильно загорают (негроиды).

Отмечены существенные различия в количестве и распределении меланосом у белых и чернокожих людей: у последних отмечается большее количество меланосом, причем с более равномерным их распределением в коже. В результате даже загоревший белокожий человек хуже защищен от воздействия ультрафиолета.

Среди факторов естественной фотозащиты особенно важна система репарации ДНК. Клетки имеют ряд защитных механизмов, посредством которых они могут восстанавливать повреждения в цепях ДНК. В частности, используется механизм репарации путем выщепления, в ходе которого небольшой участок поврежденной цепи ДНК удаляется и замещается новосинтезированным неповрежденным участком. Многие клетки подключают для репарации ДНК механизм фотореактивации, с помощью которого повреждение может быть исправлено без расщепления молекулы ДНК. При этом с молекулой ДНК, содержащей пиримидиновый димер, связывается фермент. В результате поглощения света (300-500 нм) комплексом «фермент ДНК» фермент активируется и восстанавливает поврежденный участок молекулы, расщепляя димеры с образованием нормальных пиримидиновых оснований.

На сегодняшний день существует много требований к вновь создаваемым препаратам с учетом их эффективности и безопасности для потребителя. Наиболее привычный и понятный sun protection factor — SPF. Это коэффициент, выражающий отношение МЭД защищенной UV-фильтром кожи к МЭД незащищенной кожи. SPF ориентирован на эритемный эффект, вызванный UVB-излучением. Поскольку повреждающее действие UVA не связано с эритемой, SPF не дает никакой информации о защищенности от UVA-излучения. В настоящее время используется несколько показателей, в основе которых заложена выраженность моментальной и отсроченной пигментации кожи, возникающей в ответ на действие UVA-лучей, защищенную и незащищенную фотопротектором (IPD-immediate pigment darkening, PPD-persistent pigment darkening). Используется также фактор, основанный на степени проявления фототоксичности.

Для европейских производителей фотозащитных средств сегодня существует единая классификация Colipa, оценивающая допустимые значения SPF: низкая фотозащита — 2-4-6; средняя фотозащита — 8-10-12; высокая фотозащита — 15-20-25; очень высокая фотозащита — 30-40-50; максимальная фотозащита — 50+.

В солнцезащитных средствах используются две группы соединений, отличающихся по механизму защитного действия. Первая — это экраны, являющиеся по химической природе минеральными соединениями. Они отражают и преломляют солнечные лучи и, как правило, «работают» на поверхности кожи. К ним относятся диоксид цинка (ZnO), диоксид титана (TiO 2), оксид железа (FeO Fe 3 O 4).

Другая группа — химические фильтры, которые представляют собой органические соединения. Они поглощают ультрафиолет, преобразуются в фотоизомеры. Поглощенная энергия при обратном процессе высвобождается уже в безопасном длинноволновом излучении.

К UVB-фильтрам относятся: циннаматы, бензофенон, пара-аминобезойная кислота, салицилаты, производные камфоры; UVA-фильтры — это дибензоилметан, бензофенон, производные камфоры, соединения, способные проникать в глубь эпидермиса.

Наиболее широко (до конца 1980-х годов) применялись препараты, содержащие эфиры парааминобензойной кислоты (РАВА). Сейчас на их смену пришли оксибензон, октокрилен, антранилаты и циннаматы.

Кроме спектра поглощения, значение имеет и коэффициент гашения, т. е. насколько активно препарат поглощает энергию (настолько он эффективен). Эффективными считаются значения не менее 20.000 (butyimethoxydibenzoyl methane — 31.000, octyldemethil PABA — 28.400, ethylhexyl p-methoxycinnamate — 24.200).

Следующей важной особенностью солнцезащитных средств является фотостабильность — способность сохранять свою структуру и свойства под влиянием излучения. Некоторые химические фильтры в значительной мере подвергаются фотолизу. К примеру, через 15 мин после воздействия солнечного света отмечается снижение активности: octyldimetyl PABA — на 15 %, avobenzone — до 36 %, octyl-p-methoxycinnamate — на 4,5 %.

Устойчивость препарата отражает его способность оставаться на коже и сохранять свою поглощающую способность. Это чрезвычайно важно, поскольку солнцезащитное средство используется вне комфортных условий: на жаре (потение), при купании, физических нагрузках.

Если солнцезащитный препарат (СЗП) поглощает только UVB-лучи и малоэффективен в отношении UVA-лучей, создается ошибочное ощущение безопасности длительного пребывания под солнцем.

Самым высоким требованием, предъявляемым к СЗП, соответствует солнцезащитная линия «Фотодерм». Введение инновационных молекул позволяет сочетать достоинства и фильтров, и экранов, избегая недостатки обеих групп. На сегодня «Фотодерм» обладает максимально широким спектром фотозащиты, включая UVB- и UVA-лучи, сохраняет клетки эпидермиса, включая клетки Лангерганса, от мутационного действия ультрафиолета.

Эффект создается благодаря особым микрочастицам: Тиносорб М — органический экран, Тиносорб S — новый химический фильтр. Соединения нового поколения, способные эффективно поглощать UVB- и UVA-лучи, включая короткие UVA (320-340 нм) и длинные UVA (340-400 нм). Разработанный лабораторией «Биодерма» фильтр «Клеточная биозащита», состоящий из двух натуральных молекул (эктоина и маннитола) позволяет защищать клетки Лангерганса, защищать структуры ДНК, стимулировать синтез протеина, чтобы не допустить термического шока, сохранять иммунную систему.

«Фотодерм мах» — представитель экстремальной степени защиты от всего спектра ультрафиолетового воздействия, наделенный онкопротекторной активностью.

Сотрудниками лаборатории «Биодерма» разработаны специфические фотозащитные средства, с учетом особенностей фотозависимых состояний: для больных витилиго — «Фотодерм мах тональный», для пациентов, страдающих розацеа, — «Фотодерм АR», для подростков с угревыми высыпаниями — «Фотодерм AKN», при локальной гиперпигментации — «Фотодерм SPOT».

До сих пор предметом дискуссий среди сторонников и противников загара остается главный вопрос: полезен или вреден ультрафиолет для человека? О несомненной пользе говорит тот факт, что солнечные лучи с начала века используют для лечения самых разных заболеваний (так называемая «гелиотерапия»). Солнечные лучи обладают выраженным антидепрессивным действием. Полноспектровое освещение с низкой эмиссией ультрафиолета применяют в лечении сезонных аффективных расстройств. Дерматологические заболевания (псориаз, атопический дерматит, склеродермия, ихтиоз) поддаются терапии с помощью ультрафиолета.

Солнце — непростой друг и союзник. Даже здоровому человеку, планирующему свой отдых в непривычном для него регионе, необходимо проконсультироваться со специалистом, чтобы отдых послужил укреплению здоровья.

По вопросам литературы обращайтесь в редакцию.

Л. О. Мечикова, В. В. Савенков
КВД № 3, Москва



© dagexpo.ru, 2024
Стоматологический сайт