Патогенез воспаления. Общие признаки воспаления Припухлость в очаге воспаления

28.06.2020

4 стадии:
1- Переходящий спазм приносящих артериол отчётливо выражен при быстро развивающемся повреждении(ожог)
2-Артериальная гиперемия- увеличение кровенаполнентя повреждённого участка органа(10-30минут)
3-Венозная гиперемия-максимальное расширение приносящих артериол и прекапиллярных сфинктеров,патенте скорости кровотоков микроциркуляторнвх сосудах
4-Стаз- предшествует предстатическое состояние,характеризующееся маятникообразным движением крови,вследствие нарастающего застоя крови,потери сосудистого тонуса и резкого расширения капилляров и вернул,во время систолыилнаидвижется от артерий к венам а во время диачтлы в обратом направлении

4.Механизм образования экссудатов.

Механизмы образования экссудата.
Экссудация-выход белоксодержащей жидкой части крови через сосудистую стенку в воспалённую ткань. Выход плазмы определяется увеличением кровяного давления в венозной части капилляров воспалённой ткани. Др фактором является повышение проницаемости капиллярной стенки,вызываемого медиаторами воспаления. Когда белки крови начинают поставившиеся из сосудов во внесосудистное пространство,онкотичкское давление падает,а онкотическое давление интенстициальной жидкости растёт. Начинается переход жидкости из сосудов в окружающее постранство в связи с увеличением онкотического и осмотического давления в очаге воспаления. Воспалительный отек имеет опреределенное защитное значение,белки отёчной жидкости связывают токсины,задерживают из всасывание в кровь и распространяете по всему организму.
Увеличение осмотич давления интрестициалтной жидкости обусловлено накоплением в иннрестиций осмотически активных продуктов распада тканей(натрий,калий,кальций,хлор)

5.Виды экссудатов.

Серозный экссудат характризуется умеренным содержанием белка (3-5%) и единичные полиморфноядерные лейкоциты.

Фибринозный экссудат по составу схож с серозным, но есть еще фибриноген. Особенностью химического состава фибринозного экссудата является выход фибриногена и выпадение его в виде фибрина в воспаленной ткани(крупозная пневмония, дифтерия)

Геморрагический экссудат образуется при бурно развивающемся воспалении с выраженным повреждением сосудистой стенки, когда в воспаленную ткань выходят эритроциты.(сибирская язва, натуральная оспа, чума) и другие форменные элементы крови, есть белок.

6.Эмиграция лейкоцитов в очаг воспаления. Механизмы.

Эмиграция лейкоцитов - активный процесс их выхода из просвета сосудов микроциркуляторного русла в межклеточное пространство. Спустя 1-2 ч после воздействия на ткань флогогенного фактора в очаге воспаления обнаруживается большое число эмигрировавших нейтрофилов и других гранулоцитов, позднее - через 15-20 и более часов - моноцитов, а затем и лимфоцитов.

Процесс эмиграции последовательно проходит этапы:

Роллинга (краевого стояния - «качения») лейкоцитов,

Их адгезии к эндотелию и проникновения через сосудистую стенку,

Направленного движения лейкоцитов в очаге воспаления

7. Медиаторы воспаления.

Все известные медиаторы воспаления по происхождению можно разделить на гуморальные (образующиеся в жидких средах - плазме крови и тканевой жидкости) и клеточные. К первым относятся производные комплемента, кинины и факторы свертывающей системы крови, ко вторым - вазоактивные амины, производные арахидоновой кислоты (эйкозаноиды), лизосомальные факторы, цитокины (монокины), лимфокины, активные метаболиты кислорода, нейропептиды. В то время как все гуморальные медиаторы являются предсуществующими, т. е. имеются в виде предшественников до активации последних, среди клеточных медиаторов можно вьщелить как предсуществующие (депонированные в клетках в неактивном состоянии) - вазоактивные амины, лизосомальные факторы, нейропептиды, так и вновь образующиеся (т. е. продуцируемые клетками при стимуляции) - эйкозаноиды, цитокины, лимфокины, активные метаболиты кислорода.

8.Фагоцитарная активность лейкоцитов в очаге воспаления. Фагоцитарное число, фагоцитарный показатель.

Для оценки фагоцитарной активности лейкоцитов периферической крови к цитратной крови, взятой из пальца, в объеме 0,2 мл, добавляют 0,25 мл взвеси микробной культуры с концентрацией 2 млрд. микробов в 1 мл. Смесь инкубируют 30 мин при 37°С, центрифугируют при 1500 об/мин в течение 5-6 мин, удаляют надосадочную жидкость. Осторожно отсасывают тонкий серебристый слой лейкоцитов, готовят мазки, сушат, фиксируют, красят краской Романовского-Гимза. Препараты сушат и микроскопируют.

Подсчет поглощенных микробов ведут в 200 нейтрофилах (50 моноцитов). Интенсивность реакции оценивают по следующим показателям:

1. Фагоцитарный показатель (фагоцитарная активность) - процент фагоцитов из числа сосчитанных клеток.

2. Фагоцитарное число (фагоцитарный индекс) - среднее число микробов, поглощенное одним активным фагоцитом.

9. Фагоцитоз, стадии. Нарушения фагоцитарной активности лейкоцитов.

Фагоцитоз- активный биологический процесс, заключающийся в поглощении чужеродного материала и его внутриклеточном переваривании фагоцитами.

Стадии:
1) сближение фагоцита с объектом фагоцитоза
2) распознавание фагоцитом объекта поглощения и адгезия к нему

3) поглощение объекта фагоцитом с образованием фаголизосомы

4) разрушение объекта фагоцитоза

10. Какие гормоны являются противовоспалительными и провоспалительными?

К провоспалительным гормонам относят СТГ, минералокортикоиды, тироксин, гормон паращитовидных желез, альдостерон, дезоксикортикостерон. К противовоспалительным гормонам относятся АКТГ, глюкокортикоиды, инсулин, половые гормоны.

11.Какие факторы обуславливают боль при воспалении?
Одним из важнейших эффектов кининов является присущая им способность раздражать окончания чувствительных нервов, обусловливая возникновение воспалительной боли. Боль - связывают с высвобождением других медиаторов, особенно простагландинов, серотонина . Кромее того, нейропептиды повышают чувствительность ноцицепторов к действию различных медиаторов. И за счет механического сдавления нервов.

12. Какие механизмы экссудации являются при воспалении?

Основные факторы механизма экссудации:

1) повышение проницаемости сосудов (венул и капилляров) в результате воздействия медиаторов воспаления и в ряде случаев самого воспалительного агента - ведущий фактор;

2) увеличение кровяного (фильтрационного) давления в сосудах очага воспаления вследствие гиперемии;

3) возрастание осмотического и онкотического давления в воспаленной ткани в результате альтерации и начавшейся экссудации и, возможно, снижение онкотического давления крови из-за потери белков при обильной экссудации.

13. Какие факторы способствуют развитию отека в очаге воспаления ?
Коллагеназа, гистамин, брадикинин.

14. Отличительные признаки транссудата от экссудата при воспалении?

Экссуда т-жидкость, выходящая из микрососсудов, содержащая большое количество белка, ФЭК.
Транссудат - отечная жидкость, скапливающаяся в полостях тела и тканевых щелях. Транссудат обычно бесцветен или бледно-желтого цвета, прозрачный, реже мутноват из-за примеси единичных клеток спущенного эпителия, лимфоцитов, жира. Содержание белков в транссудате обычно не превышает 3%; ими являются сывороточные альбумины и глобулины. В отличие от экссудата в транссудате отсутствуют ферменты, свойственные плазме .). Для отличия транссудата от экссудата применяют пробу Ривальты, основанную на разном содержании в них белка.

15. Какие физико-химические изменения характерны для участка острого воспаления?

16.Что является медиаторами воспаления, вызывающими увеличение проницаемости сосудов при воспалении?

Компоненты и производные комплемента, кинины(брадикинины, каллидин), простагландины, лейкотриены, серотонин, лизосомальные ферменты, катионные белки, супероксидный анион-радикал, гидроксил-радикал ОН-, перекись водорода Н2О2. Нейропептиды. Это вещество Р, кальциотонин (генсвязанный пептид), нейрокинин А. Ацетилхолин, катехоламины.

17. Какие медиаторы воспаления являются клеточными и плазменными?



18.Механизмы действия медиаторов воспаления.
Гистамин
Спазм гладкой мускулатуры (увеличи- вает образование простагландинов Е2 и F2a, тромбоксана). Вазодилатация (расширение прекапиллярных артериол). Повышение проницаемости стенки сосудов, подавление хемотаксиса и фаго- цитарной активности нейтрофилов, угнетение активности лимфоцитов и выработки лимфокинов. Лаброциты, базофильные лейкоциты.
Серотонин Сужение посткапиллярных венул, повышение проницаемости стенки сосудов. Боль. Зуд. Тромбоциты, лаброциты.
Кинины (брадикинин, метиониллизилбрадикинин). Вазодилятация. Повышение проницае- мости сосудов. Боль. Спазм глазной мускулатуры. a2-Глобулин плазмы крови.
Компоненты системы комплемена (С3а, С5а). Дегрануляция тучных клеток (выделе- ние гистамина). Повышение проницае- мости сосудистой стенки. Спазм глад- кой мускулатуры. Стимуляция хемотак- сиса лейкоцитов. Белки плазмы.
Интерлейкины и монокины : ИЛ-1ß, фактор некроза опухоли (ФНО-a) и др. Стимуляция синтеза простагландинов, фагоцитоза, пролиферации и активации фибробластов. Пирогенез. Макрофаги, моноци- ты, нейтрофильные гранулоциты.
Лимфокины : ИЛ-2, фактор активации макрофагов. Активация естественных киллеров. Стимуляция гранулоцитов. Лимфоциты.
Простагландины (ПГЕ, ПГF2α). Вазодилятация. Повышение проницае- мости сосудистой стенки. Пирогенез. Полиненасыщенные жирные кислоты фос- фолипидов мембран и плазмы крови. Лейкотриены (ЛТВ4 и др.). Спазм гладкой мускулатуры. Повыше- ние проницаемости сосудистой стенки. Активация лейкоцитов. Гранулоциты. Моноциты. Тромбоциты. Лаброциты. 17 1 2 3 Тромбоксаны Вазоконстрикция. Агрегация тромбоци- тов. Активация гранулоцитов. Макрофаги, моноци- ты. Гранулоциты.
Лизосомальные факторы , (кислые гидролазы, неферментативные катионные белки). Вторичная альтерация, “генерация” “медиаторов воспаления”. Способствуют вазодилятации, повышению прони- цаемости сосудов, развитию отека и эмиграции лейкоцитов, микротромбообразованию. Микробоцидность. Нейтрофильные гранулоциты. Моноциты, макрофаги.

19. Какие факторы обуславливают выход плазменных белков из микроциркуляторный сосудов в очаг воспаления.
-сокращение эндотелиальных клеток
-повышение онкотического давления интерстициальной жидкости

20. какие клетки являются главным источником гистамина в очаге острого воспаления.
в очаге острого воспаления: тучные клетки.
медиаторы острого воспаления (являются анафилатоксинами, т. е. либераторами гистамина из тучных клеток, повышают проницаемость посткапиллярных венул как прямо, так и опосредованно через гистамин; С5а, образующийся из С5а в плазме и тканевой жидкости под влиянием карбоксипептидазы N, не связан с гистамином, но является нейтрофилзависимым, т.е. повышает проницаемость микрососудов за счет лизосомальных ферментов и неферментных катионных белков, активных метаболитов кислорода, высвобождаемых из полиморфноядерных гранулоцитов; С5а и С5а des Arg привлекают нейтрофилы; С5а и СЗа также высвобождают интерлейкин-1, простагландины, лейкотриены, фактор, активирующий тромбоциты, и синергистически взаимодействуют с простагландинами и веществом Р); - СЗЬ опсонизирует патогенный агент и способствует иммунной адгезии и фагоцитозу; - комплекс С5Ь-С9 ответствен за лизис микроорганизмов и патологически измененных клеток; - кинины - вазоактивные пептиды, образующиеся из кининогенов (а2-глобулинов) под влиянием калликреинов в плазме (нонапептид брадикинин) и в тканевой жидкости (декапептид лизилбрадикинин, или каллидин).

21. чем обусловлено противовоспалительное действие глюкокортикоидов
.
Глюкокортикоиды оказывают противошоковое, противовоспалительное, противоаллергическое, иммунодепрессивное, антитоксическое действие. Противовоспалительное действие обусловлено угнетением активности фосфолипазы А 2 и стабилизацией мембран клеток, снижением образования простагландинов и лейкотриенов. Противоаллергический эффект связан со стабилизацией тучных клеток и препятствием их дегрануляции. Кроме того, противоаллергический и антидепрессивный эффекты являются следствием уменьшения миграции Т- и В-лимфоцитов и нарушения их взаимодействия.
Основными показаниями к применению глюкокортикоидов является ревматизм, коллагенозы, ревматоидный артрит, полиартрит, бронхиальная астма, кожные аллергические заболевания.

22. чем обусловлено повышение осмотического и онкотического давления в воспалительной ткани.

Умеренное увеличение проницаемости приводит к выходу мелкодисперсных фракций белков, прежде всего альбуминов. При значительном увеличении проницаемости происходит выход глобулинов, а при еще более выраженном - фибриногена, который во внесосудистом русле образует сгустки фибрина.
В ткани очага воспаления повышается осмотическое давление (гиперосмия), при этом осмотическое давление крови обычно не изменяется. Возникающий градиент осмотического давления крови и ткани является важным фактором усиления экссудации и развития отека. Гиперосмия тканей возникает в результате повышения в них концентрации осмоактивных частиц, ацидоза тканей.
В ткани очага воспаления повышается также и онкотическое давление (гиперонкия). Это происходит вследствие возрастания концентрации, дисперсности и гидрофильности белковых продуктов. В крови онкотическое давление, как правило, снижается (гипоонкия) в связи с нарушением функции печени и уменьшением образования альбуминов гепатоцитами, увеличением синтеза менее онкоактивных глобулинов.Градиент онкотического давления ткани и плазмы крови - важный фактор усиления экссудации и развития отека.
мехамизмы экссудации и формирования воспалительного отека:
1.Повышение проницаемости стенок микрососудов.
2.Усиление выхода жидкости с умеренным содержанием белка (онкотическое и осмотическое давление ткани в очаге воспаления временно сохраняется неизменным).
3.В период тяжелых расстройств микроциркуляции и возникновения гипоксии развивается гиперосмия и гиперонкия ткани.

23. Чем обусловлен ацидоз в очаге воспаления?
Освобождением и накоплением большого количества кислот.
В самый начальный период воспалительной реакции развивается кратковременный первичный ацидоз, повышается содержание кислых продуктов. При наступлении артериальной гипе-ремии кислотно-основное состояние в тканях воспалительного очага нормализуется, а затем развивается длительный выраженный метаболический ацидоз, который вначале является компенсированным (происходит снижение щелочных резервов тканей, но их рН не меняется). По мере прогрессирования воспалительного процесса развивается уже некомпенсированный ацидоз вследствие нарастания концентрации свободных водородных ионов и истощение тканевых щелочных резервов. При альтерации клеток высвобождается большое количество внутриклеточного калия. В сочетании с увеличением количества водородных ионов это приводит к гиперионии в очаге воспаления, а последняя вызывает повышение осмотического давления. Накопление олиго- и монопептидов в процессе протеолиза полипептидов активированными в условиях ацидоза высвободившимися лизосо- мальными гидролазами приводит к возрастанию онкотического давления.

24. Пролиферация. Механизмы пролиферации.
По мере очищения очага воспаления наступает пролиферация– характеризующаяся увеличением числа стромальных паренхиматозных клеток, а также образованием межклеточного вещества в очаге воспаления. Эти процессы направлены на регенерацию разрушенных тканевых элементов. Существенное значение на этой стадии воспаления имеют различные биологически активные вещества. Пролиферацию завершает инволюция рубца, то есть уничтожение и элиминация лишних коллагеновых структур. Основные клеточные эффекторы пролиферации – это активированные мононуклеарные фагоциты, фибробласты и иммунокомпетентные клетки. Фибробласты в очаге воспаления образуют и высвобождают коллаген и энзим коллагеназу, ответственный за формирование коллагеновых структур стромы соединительной ткани. Кроме то они выделяют фиб- ронектин, определяющий миграцию, пролиферацию и адгезию фибробластов. Мононуклеары и лимфоциты секретируют цитокины как стимулирующие, так и подавляющие эти функции фибробластов. Нейтрофилы, как клеточные эффекторы воспаления, влияют на пролиферацию, секретируя тканеспецифические ингибиторы, взаимодействующие по принципу обратной связи.

VI.Наследственность.

1.Этиология наследственных болезней.

Этиологическими факторами наследственных болезней являются мутации наследственного материала. Мутации, затрагивающие весь хромосомный набор или отдельные хромосомы в нем (полиплоидии и анэуплоидии), а также участки хромосом (структурные перестройки - делеции, инверсии, транслокации, дупликации и т.д.) приводят к развитию хромосомных болезней. При хромосомных болезнях нарушается сбалансированность набора генов, что может приводить к внутриутробной гибели эмбрионов и плодов, врожденным порокам развития и другим клиническим проявлениям. Чем больше хромосомного материала вовлечено в мутацию, тем раньше проявляется заболевание и тем значительнее нарушения в физическом и психическом развитии индивидуума. (Хромосомные заболевания редко передаются от родителей к детям, в основном это случайно возникшая новая мутация. Но около 5% людей являются носителями сбалансированных изменений в хромосомах, поэтому при бесплодии, мертворождениях, привычном невынашивании или наличии в семье ребенка с хромосомной патологией необходимо исследовать хромосомы каждого из супругов. Генными болезнями называются заболевания, обусловленные изменениями структуры молекулы ДНК (генные мутации).)-можно и не писать.

2. Виды мутаций.
По причине, вызвавшей мутации:
«спонтанные»
индуцированные.
1. Спонтанные» мутации возникают под влиянием естественных мутагенов экзо‑ или эндогенного происхождения, без специального (целенаправленного) вмешательства человека. Результате действия химических веществ,
2. Индуцированные мутации вызываются направленным воздействием факторов внешней или внутренней среды. Контролируемые - целенаправленно, с целью изучения механизмов мутагенеза и/или его последствий.
Неконтролируемые - при выбросе радиоактивных элементов в среду обитания при авариях на атомных электростанциях.
По виду клетки,в которой произошла мутация:
гаметические и
соматические.
Гаметические мутации выявляются в половых клетках. Они наследуются потомками и, как правило, обнаруживаются во всех клетках организма.
Соматические мутации происходят в неполовых – соматических клетках организма и проявляются только у того индивида, у которого они возникают. Эти мутации передаются только дочерним соматическим клеткам при их делении и не наследуются следующим поколением индивида.
По биологическому значению
патогенные,
нейтральные и
благоприятные
Патогенные мутации приводят либо к гибели эмбриона (или плода), либо к развитию наследственных и врождённых заболеваний.
Нейтральные вызывающие веснушки, изменение цвета волос, радужной оболочки глаза).
Благоприятные повышают жизнеспособность организма или вида (например, тёмная окраска кожных покровов у жителей африканского континента).

По масштабу изменений генетического материала
генные,
хромосомные или
геномные.

Генные(точковые) представляют собой изменения молекулярной структуры ДНК(делеция, дубликация, удвоение, инверсия, инсекция, транзиция, трансверсия). Значительная часть точковых мутаций нарушает «функционирование» гена и приводит к развитию генных (моногенных) болезней. Фенотипически генные болезни наиболее часто проявляются признаками нарушений метаболизма (например, фенилкетонурия, нейрофиброматоз, муковисцидоз, мышечная дистрофия Дюшенна–Беккера).
Хромосомные мутации (аберрации) характеризуются изменением структуры отдельных хромосом, а геномные –их числа.

3. Типы наследования
АУТОСОМНО-ДОМИНАНТНЫЙ
(синдром Марфана, гемоглобинопатия М, хорея Хантингтона, полипоз толстой
кишки, семейная гиперхолестеринемия, нейрофиброматоз, полидактилия)
признакаи: Одинаковая частота патологии у лиц мужского и женского пола.Наличие больных в каждом поколении родословной.Вероятность рождения больного ребёнка равна 50% . Непоражённые члены семьи, как правило, имеют здоровых потомков.
АУТОСОМНО-РЕЦЕССИВНЫЙ ( фенилкетонурия, кожно-глазной альбинизм, серповидно-клеточная анемия, адреногенитальный синдром, галактоземия, гликогенозы, гиперлипопротеинемии, муковисцидоз)
признаки: Равная частота патологии у лиц мужского и женского пола.Проявление патологии в родословной «по горизонтали», часто у сибсов.Отсутствие заболевания у единокровных (дети одного отца от разных матерей) и единоутробных (дети одной матери от разных отцов) братьев и сестёр.Родители больного, как правило, здоровы. Это же заболевание может обнаруживаться у других родственников, например у двоюродных или троюродных братьев (сестёр) больного.
СЦЕПЛЕННОЕ С ХРОМОСОМОЙ Х-ДОМИНАНТНОЕ ( гипофосфатемии - витамин D-резистентный рахит; болезнь Шарко-Мари-Тута Х-сцепленная доминантная; рото-лице-пальцевой синдром типа I) Поражены лица мужского и женского пола, но женщины в 2 раза чаще.Передача больным мужчиной патологического аллеля всем дочерям и только дочерям, но не сыновьям. Сыновья получают от отца хромосому Y.Передача больной женщиной заболевания и сыновьям, и дочерям с равной вероятностью.Более тяжёлое течение заболевания у мужчин, чем у женщин.
СЦЕПЛЕННОЕ С ХРОМОСОМОЙ Х-РЕЦЕССИВНОЕ (гемофилия А, гемофилия В; Х-сцепленная рецессивная болезнь Шарко-Мари-Тута; дальтонизм; мышечная дистрофия Дюшенна – Беккера; синдром Калльмана; болезнь Хантера (мукополисахаридоз типа II); гипогаммаглобулинемия брутоновского типа.Больные рождаются в браке фенотипически здоровых родителей.Заболевание наблюдается почти исключительно у лиц мужского пола. Матери больных - облигатные носительницы патологического гена.Сын никогда не наследует заболевание от отца. У носительницы мутантного гена вероятность рождения больного ребёнка равна 25% (независимо от пола новорождённого); вероятность рождения больного мальчика равна 50%.
ГОЛАНДРИЧЕСКИЙ (ихтиоз кожи, гипертрихоз ушных раковин, избыточный рост волос на средних фалангах пальцев кистей, азооспермия) Передача признака от отца всем сыновьям и только сыновьям.Дочери никогда не наследуют признак от отца.«Вертикальный» характер наследования признака.Вероятность наследования для лиц мужского пола равна 100%.
МИТОХОНДРИАЛЬНОЕ НАСЛЕДОВАНИЕ (митохондриальные болезни): атрофия зрительного нерва Лебера, синдромы Лея (митохондриальная миоэнцефалопатия), MERRF (миоклоническая эпилепсия), кардиомиопатия дилатационная семейная.Наличие патологии у всех детей больной матери.Рождение здоровых детей у больного отца и здоровой матери.Указанные особенности объясняются тем, что митохондрии наследуются от матери. Доля отцовского митохондриального генома в зиготе составляет ДНК от 0 до 4 митохондрий, а материнского генома - ДНК примерно 2500 митохондрий. К тому же похоже, что после оплодотворения репликация отцовской ДНК блокируется.

4. заболевания передающиеся по аутосомно доминантному типу.
При аутосомно-доминантном типе наследования большинство больных рожда­ются в браках между пораженным (гетерозиготным по аутосомно-доминантному гену Аа) и здоровым супругом (гомозиготному по нормальному аллелюаа)
Семейная гиперхолестеринемия, гемохроматоз, синдром Марфана, нейрофиброматоз 1-го типа (бо­лезнь Реклингхаузена), синдром Элерса-Данло, миотоническая дистрофия, ахондроплазия, несовершенный остеогенез. синдром Марфана– наследственное заболевание, представляющее собой генерализованное поражение соединительной ткани с высокой пенетрантность и различной экспрессивностью.
основными признаками аутосомно-доминантного типа наследования заболевания, являют­ся:1) заболевание проявляется в каждом поколении2) каждый ребенок родителя, больного аутосомно-доминантным заболеванием, имеет 50%-ный риск унаследовать это заболе­вание;3) лица мужского и женского пола поражаются одинаково час­то и в одинаковой мере;4) больной ребенок имеет больного родителя;5) непораженные члены семьи свободны от мутантного гена

5. заболевания передающиеся по аутосомно рецессивному типу.
По аутосомно-рецессивному типу передается большинство наследственных болезней, которые развиваются у гомозиготных детей, оба родителя которых являются гетерозиготными носителями патологического признака и фенотипически здоровы. Передается аномалия в виде альбинизма (отсутствие пигмента в коже, волосах, радужке глаза из-за отсутствия тирозиназы, в норме превращающей тирозин в меланин), врожденная глухонемота, идиотия со слепотой, шизофрения сахарный диабет, полная цветовая слепота, микроцефалии. Очень часто по аутосомно-рецессивному типу передаются различные нарушения обмена веществ: фенилкетонурия(основу которой составляет понижение активности глюкозоаланингидроксилазы, что приводит к накоплениюl-фенилаланина в тканях из-за блокады его перехода в тирозин),генерализованный гликогеноз(понижение активности глюкозо-6-фосфатазы органов, из-за чего гликоген накапливается в тканях),галактоземия (возникает из-за дефекта лактазы - фермента, расщепляющего лактозу; характеризуется также увеличением печени, развитием катаракты и психических отклонений),сфинголипидоз (возникает из-за отсутствия фермента сфинголипазы в клеточных мембранах, способствует отложению холестерина и нарушению обмена липидов как мембранных сосудов, так и других клеточных структур; сопровождается гибелью детей в возрасте до 5 лет,дефицит пиридоксина - витамина В6(приводит к нарушению обмена белков, аминокислот, липидов, ферментов, развитию гипохромной анемии, эпитептиформных судорог и др.)адреногенитальный синдром:генетически обусловленная блокада синтеза глюкокортикоидных гормонов в коре надпочечников (возникает в результате дефицита А-В-гидроксилазы), сопровождающаяся увеличением в последней продукции андрогенов. Это приводит к маскулинизации девочек и преждевременному половому созреванию мальчиков.

6. Методы изучения наследственной патологии.

Клинико-генеалогический метод Этот метод основан на прослеживании какого-либо нормального или патологического признака в ряде поколений с указанием родственных связей между членами родословной. Начинается от пробанда, которым называется лицо, первым попавшим в поле зрения врача.

Метод включает два этапа:

Сбор сведений о семье

Генеалогический анализ

Близнецовый метод Если изучаемый признак проявляется у обоих близнецов пары, их называют конкордантными. Конкордантность – это процент сходства по изучаемому признаку. Отсутствие признака у одного из близнецов – дискордантность.

Популяционно-статистический метод Исследование признаков в больших группах людей, различающихся по наследственным характеристикам (раса, нация, этническая группа, изоляты) или условиям жизни.

Цитогенетические методы (анализ кариотипа и полового хроматина)

Дерматоглифика – метод изучение рельефных узоров на коже, образуемых папиллярными линиями и гребешкам (находится под генетическим контролем).

7. Хромосомные болезни. Болезнь Дауна и др.

Синдром Дауна (трисомия по хромосоме 21) – чаще трисомия в 21-й паре аутосом (45 аутосом + XX у девочек или + XY у мальчиков). В остальных случаях транслокационный перенос. Характерно: олигофрения разной степени, низкий рост, разболтанность суставов, мышечная гипотония, короткие пальцы, поперечная «обезьянья» складка на ладони, монголоидный разрез глаз, эпикантус,недоразвитие половых признаков. Следствие избытка синтеза пуринов

8. Хромосомные болезни. Синдром Шерешевского-Тернера.

Синдром Шерешевского - Тернера - это хромосомное заболевание, для которого характерно либо полное отсутствие одной хромосомы, либо наличие дефекта в одной из Х - хромосом. Кариотип таких женщин - 45 Х0 . Отсутствует половой хроматин в (тельца Барра) в ядрах клеток. У таких женщиннизкий рост, короткая широкая шея, множественные пигментные пятна, недоразвитие желёз и яичников, первичная аменорея и бесплодие, умственное развитие нормальное.

9. Хромосомные болезни. Синдром трисомии.

Наследственное нарушение, обусловленное наличием дополнительной X хромосомы, является частным случаем анеуплоидии. В большинстве случаев носители дополнительной X-хромосомы - женщины без заметных признаков патологии (Два тельца Барра). Трисомия по X-хромосоме приводит к незначительному повышению внутриутробной смертности. Развитие может протекать с некоторыми нарушениями, могут возникнуть проблемы с координацией, моторикой и развитием речи. В некоторых случаях отмечен меньший размер головы (без заметного снижения умственных способностей)

10. Хросомные болезни. Синдром Клайнфельтера.

Обнаружено несколько типов полисомии по хромосомам X и Y у лиц мужского пола: 47, XXY; 47, XYY; 48, XXXY; 48, XYYY; 48 XXYY; 49 XXXXY; 49 XXXYY. Наиболее распространен синдром Клайнфельтера (47, XXY). Характерны высокий рост астеническое телосложение евнухоидного типа, гинекомастия, атрофия яичек и бесплодия, часто остеопороз. В ядрах обнаруживается половой хроматин (тельца Барра).

11. Патогенез наследственных болезней. Фенилкетонурия.

Фенилкетонурия - редкое наследственное заболевание группы ферментопатий, связанное с нарушением метаболизма аминокислот, главным образом фенилаланина. При несоблюдении низкобелковой диеты сопровождается накоплением фенилаланина и его токсических продуктов, что приводит к тяжёлому поражению ЦНС, проявляющемуся, в частности, в виде нарушения умственного развития (фенилпировиноградной олигофрении). Одно из немногих наследственных заболеваний, поддающихся успешному лечению. Вследствие метаболического блока активируются побочные пути обмена фенилаланина, и в организме происходит накопление его токсичных производных - фенилпировиноградной и фениломолочной кислот, которые в норме практически не образуются. Кроме того, образуются также почти полностью отсутствующие в норме фенилэтиламин и ортофенилацетат, избыток которых вызывает нарушение метаболизма липидов в головном мозге. Предположительно, это и ведёт к прогрессирующему снижению интеллекта у таких больных вплоть до идиотии.

12. Болезни, сцепленные с полом.

Наследование, сцепленное с полом - наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом. Передача дальтонизма по наследству связана с X-хромосомой и практически всегда передаётся от матери-носителя гена к сыну, в результате чего в двадцать раз чаще проявляется у мужчин, имеющих набор половых хромосом XY.

Гемофилия А (классическая гемофилия) - генетическое заболевание, вызванное врождённым дефицитом белка фактора свёртывания крови VIII. Гемофилия - заболевание, связанное с рецессивной мутацией в X-хромосоме. Встречается у мужчин и у гомозиготных женщин.

X-связанный ихтиоз (X-сцепленный ихтиоз) - X-сцепленное рецессивное кожное заболевание, вызываемое врождённой недостаточностью стероидной сульфатазы, фермента, преобразующего стероиды в активную форму.

13. Митохондриальное наследование.

У митохондрий имеется собственная ДНК - митохондриальная ДНК. В отличие от ядерных генов, митохондриальная ДНК передается исключительно по материнской линии. Примером митохондриальных болезней служат наследственная атрофия зрительных нервов Лебера, миоклоническая эпилепсия с рваными красными волокнами, митохондриальная миопатия, энцефалопатия, лактатацидоз.

VII. Лихорадка.

Что какое лихорадка?

Лихорадка – повышение температуры тела, обусловленная появлением в организме пирогенных веществ. При этом температура глубоких областей туловища и тела постоянна.

Различают инфекционную (бактерии, вирусы) и неинфекционную лихорадку (приступ подагры, аллергические реакции). Различают экзогенные и эндогенные пирогенные вещества. Всё связано с продукцией цитокинов – прежде всего интерлейкина-1.

Перегревание. Причины.

Патологические реакции организма на высокую температуру окружающей среды, связанные с дегидратацией, потерей электролитов и расстройством механизмов терморегуляции.

Причиной служит избыточное поступление тепла извне (экзогенное перегревание) или интенсивная патологическая теплопродукция в самом организме (эндогенное перегревание). Долго переносится не может.

    Изменение количества лейкоцитов в периферичес­кой крови : лейкоцитоз (развивается при подав­ляющем большинстве воспалительных процессов) или значительно реже лейкопения (например, при воспалении вирусного происхождения). Лейкоцитоз обусловлен активацией лейкопоэза и перераспределени­ем лейкоцитов в кровеносном русле. К числу основных причин его развития относятся стимуляция САР, воздействие некоторых бактериаль­ных токсинов, продуктов тканевого распада, а также ряда медиаторов воспаления (например, ИЛ 1 , фактора индукции моноцитопоэза и др.).

    Лихорадка развивается под влиянием поступающих из очага воспаления пирогенных факторов, таких как липополисахариды, катионные белки, ИЛ 1 и др.

    Изменение белкового “профиля” крови выражает­ся в том, что при остром процессе в крови накапливают­ся синтезируемые печенью так называемые “белки ост­рой фазы” (БОФ) воспаления - С-реактивный белок, церулоплазмин, гаптоглобин, компоненты комплемента и др. Для хронического течения воспаления характерно увеличение в крови содержания - и особенно -глобулинов.

    Изменения ферментного состава крови выражаются в увеличении активности трансаминаз (например, аланинтрансаминазы при гепатите; аспартаттрансаминазы при миокардите), гиалуронидазы, тромбокиназы и т.д.

    Увеличение скорости оседания эритроцитов (СОЭ) из-за снижения отрицательного заряда эритроцитов, по­вышения вязкости крови, агломерации эритроцитов, из­менения белкового спектра крови, подъема температу­ры.

    Изменения содержания гормонов в крови заключа­ются, как правило, в увеличении концентрации катехоламинов, кортикостероидов.

    Изменения в иммунной системе и аллергизация ор­ганизма выражаются в нарастании титра антител, появ­лении сенсибилизированных лимфоцитов в крови, раз­витии местных и общих аллергических реакций.

  1. Механизмы первичной и вторичной альтерации. Медиаторы воспаления, их происхождение и основные эффекты. Схема механизма образования в очаге воспаления брадикинина и простагландинов.

Первичная альтерация вызывается непосредственным действием повреждающего агента (например, механическая травма молотком).

Для неё характерны ацидоз повреждения, снижение макроэргов, нарушение работы насосов, накопление недоокисленных продуктов, изменение рН, повышение проницаемости мембранных структур, набухание клетки.

Вторичная альтерация возникает в динамике воспалительного процесса и обусловлена как воздействием флогогенного агента, так и факторов первичной альтерации (в основном нарушениями кровообращения).

Для неё характерно непосредственное воздействие лизосомальных ферментов (гидролазы, фосфолипазы, пептидазы, коллагеназы и т.д.), их повреждающее влияние. Опосредованное действие оказывают медиаторы, система комплемента, кининовая система.

Проявления альтерации:

    Нарушение биоэнергетических процессов в тканях.

Отвечают на повреждение все элементы поврежденной ткани: микроциркуляторные единицы (артериолы, капилляры, венулы), соединительная ткань (волокнистые структуры и клетки), тучные клетки, нервные клетки.

Нарушение биоэнергетики в этом комплексе проявляются в снижении потребления кислорода тканью, снижении тканевого дыхания . Повреждение митохондрий клеток является важнейшей предпосылкой для этих нарушений.

В тканях преобладает гликолиз . В результате возникает дефицит АТФ, дефицит энергии. Преобладание гликолиза ведет к накоплению недоокисленных продуктов (молочной кислоты), возникает ацидоз .

Развитие ацидоза в свою очередь приводит к нарушению активности ферментных систем , к дезорганизации метаболического процесса.

    Нарушение транспортных систем в поврежденной ткани.

Это связано с повреждением мембран, недостатком АТФ, необходимой для функционирования калий-натриевого насоса .

Универсальным проявлением повреждения любой ткани всегда будет выход калия из клеток, и задержка в клетках натрия. С задержкой натрия в клетках связано еще одно тяжелое или летальное повреждение - задержка в клетках воды, то есть внутриклеточный отек .

Выход калия ведет к углублению процесса дезорганизации метаболизма, стимулирует процессы образования биологически активных веществ - медиаторов .

    Повреждение мембран лизосом.

При этом высвобождаются лизосомальные ферменты . Спектр действия лизосомальных ферментов чрезвычайно широк, фактически лизосомальные ферменты могут разрушать любые органические субстраты. Поэтому при их высвобождении наблюдаются летальные повреждения клеток .

Кроме этого лизосомальные ферменты, действуя на субстраты, образуют новые биологические активные вещества, токсические действующие на клетки, усиливающие воспалительную реакцию - это лизосомные флогогенные вещества .

При альтерации возможны метаболические (гипоксия) или структурные изменения (механическая травма), поэтому выделяют два ее патогенетических механизма:

    повреждение биоэнергетики (ишемия, гипоксия),

    повреждение мембран и транспортных систем.

Медицина и ветеринария

ВОСПАЛЕНИЕ Сущность воспаления кардинальные признаки адаптивная роль воспаления виды местные и общие процессы при воспалении причины воспаления механизмы альтерации динамика сосудистой реакции в очаге воспаления механизмы экссудации медиаторы воспаления стадии фагоцитоза значение незавершенного фагоцитоза. ФОРМЫ ВИДЫ ВОСПАЛЕНИЯ Альтеративное В. МЕХАНИЗМЫ ВОСПАЛЕНИЯ: АЛЬТЕРАЦИЯ: пусковой механизм В. Ферменты лизосом ведут к дегрануляции тучных клеток и выходу гистамина важнейший медиатор воспаления...

Лекция 4.

ВОСПАЛЕНИЕ

Сущность воспаления, кардинальные признаки, адаптивная роль воспаления, виды, местные и общие процессы при воспалении, причины воспаления, механизмы альтерации, динамика сосудистой реакции в очаге воспаления, механизмы экссудации, медиаторы воспаления, стадии фагоцитоза, значение незавершенного фагоцитоза.

ВОСПАЛЕНИЕ - типовой патологический процесс - эволюционно сформировавшаяся защитно-приспособительная реакция организма для локализации, уничтожения и удаления патогенного агента, характеризующаяся явлениями альтерации, экссудации и пролиферации . (Выделяют отдельно также сосудистые реакции и фагоцитоз).

Только в В. всегда есть все 3 фактора – альтерация, экссудация и пролиферация. Эволюционный прообраз В. – внутриклеточное пищеварение (остался как фагоцитоз у многоклеточных).

В. – адаптивная реакция, устраняющая патогенный агент, но повреждение тканей в ходе В. указывает и на патогенный его характер, что требует контроль и лечебную регуляцию В.

Патогенны – боль, припухлость, нарушение функции, альтерация, экссудация с дальнейшим инфицированием, пролиферация – с избытком (грануломы), ишемия, венозная гиперемия с тромбозами, повышение проницаемости лизосом, выделение гистамина, простагландинов и др. БАВ в избытке, физико-химические нарушения (закисление, отек), преобладание гликолиза и отсутствие эффекта Пастера, нагноение (нарастание альтерации, диссеминация инфекции), амилоидоз при хронической инфекции, соединительно-тканное заживление рубцом с утратой паренхимы, резкие общие изменения.

Саногенез В.: артериальная гиперемия – насыщение кислородом, венозная – локализация очага (вместе с отеком, стазом и тромбозами), боль – щажение ткани, экссудация – стимулирует фагоцитоз, пролиферация – заживление; лизосомы – гибель патогенного агента.

ФОРМЫ (ВИДЫ ) ВОСПАЛЕНИЯ – Альтеративное В., Экссудативное В. (серозное, фибринозное, гнойное, геморрагическое и ихорозное – гнилостное) и Пролиферативное В. .

Роль состояния организма : выраженность В. – от реактивности организма (от ан- до гипер- эргии).

Кардинальные признаки В.: (Гален и Цельс) 1.Краснота (rubor ) – артериальная гиперемия (венозная – цианоз), 2.Припухлость (tumor ) – тургор тканей повышен, 3. Жар (calor ) – артериальная гиперемия, пептидные пирогены и усиление обмена, 4. Боль (dolor ) – раздражение болевых рецепторов биоактивными веществами и сдавление отеком, 5. Нарушение функции (functio laesa ) – боль, отек, альтерация, изменение обмена и пр.

Общие реакции (системные) при В. – лихорадка (ИЛ-1 и ИЛ-6), лейкоцитоз (из депо и лейкопоэтины), увеличение СОЭ (диспротеинэмия, ацидоз, гиперкалиемия, проагреганты, повышение адгезии, агрегации эритроцитов), иммуные рекции и диспротеинэмия (повышение глобулинов), выход гранулоцитов из депо (костного мозга), гормональные изменения (активация симпато-адреналовой системы, стресс), изменения гемостаза, дисферментемия. Местные реакции – обычно в пределах гистиона ткани (структурно-функциональная единица – паренхима, соединительная ткань, сосуды, нервы).

Причины В. Экзогенные и эндогенные. Инфекционнные и неинфекционные По природе – механические (травмы), физические (тепло, УФ, холод), химические, биологические (токсины, микроорганизмы).

МЕХАНИЗМЫ ВОСПАЛЕНИЯ :

АЛЬТЕРАЦИЯ : пусковой механизм В., результат прямого действия патогенного агента (1-ичная альтерация) и повреждения лизосом, а также местной рефлекторной ишемии (2-ичная альтерация) – что ведет к химически-индуцируемому повышению проницаемости сосудов, к транссудации и экссудации. Ферменты лизосом ведут к дегрануляции тучных клеток и выходу гистамина (важнейший медиатор воспаления) – образование пор между эндотелиальными клетками и внутриклеточных транспортных каналов; сокращение стенок вен на гистамин повышает давление и проницаемость в микроциркуляторном русле. Ферменты лизосом через фактор Хагемана и с участием -глобулинов – образуют фактор проницаемости сосудов, а также активируется калликреин и запускается цепь высвобождения кининов (также повышают проницаемость).

Активируется в ответ на химические изменения система комплемент – С`- зависимый лизис мембран. Фосфолипазы лизосом расщепляют фосфолипиды клеточных мембран с синтезом арахидоновой кислоты и индукцией простагландинов – медиаторов воспаления. Ферменты лизосом активируют также процессы пролиферации при В.

Схема 1 Механизмы воспаления (АЛЬТЕРАЦИЯ)

Патоген- АЛЬТЕРАЦИЯ (1-ичная альтер.+рефлект.ишемия)

ный агент

Повышение прони- ферменты  тучные клетки повреждения

Цаемости сосудов лизосом  вен и тромбозы

гистамин 

Фактор Хагемана активация Расстройства

+  -глобулинов комплемента периферического

  кровообращения

Ф-р прониц .со- лизис мембран

Судов и кинины  Наруш . обмена Эмиграция

 Фосфолипиды лейкоцитов

трансСудация и экссудация ПГ

СОСУДИСТАЯ РЕАКЦИЯ: Первичный кратковременный спазм сосудов ведет к ишемии ткани (т.к. вазоконстрикторы чувствительнее к раздражению), затем возбуждаются вазодилятаторы и развивается нейротоническая артериальная гиперемия , которая быстро сменяется нейропаралитической (и миопаралитической) артериальной гиперемией, а повреждение стенок вен и лимфососудов ведет к тромбозам и венозной гиперемии, это ведет к отеку и сдавлению вен извне, замыкая порочный круг венозной гиперемии.

Ишемия : секунды, вазоконстрикция – катехоламины (КА), тромбоксан А2 (ТрбА 2 ), лейкотриены (ЛТ).

Нейротоническая гиперемия : ацетилхолин (АХ); избыток при альтерации и ишемии ткани К + и Н + повышает чувствительность к нему.

Гуморальный механизм : кинины, простагландины, аденозин, оксид азота, гистамин.

Миопаралитический механизм : снижение базального тонуса артериол при ишемии и ацидозе.

Схема 2 Механизмы воспаления (СОСУДИСТАЯ РЕАКЦИЯ)

Нейрогенная  Нейротоничес-  Нейропаралитиче-  Венозная

ишемия (КА, кая гиперемия ская гиперемия гиперемия

ТрА 2 , ЛТ) (АХ + К + , Н + ) +миопаралитическая и тромбозы

(кинины, ПГ, аденозин, NO , гистамин)

ЭКССУДАТ : жидкость, выходящая из микрососудов с большим ко-личеством белка и форменных элементов крови.

Причины : увеличение проницаемости сосудов (гидролиз базальной мембраны, сокращение актомиозина в эндотелии, разрушение цитоскелета эндотелия, образование щелей- ишемия, ацидоз, альтерация)

ЭМИГРАЦИЯ ЛЕЙКОЦИТОВ: через 1-2 ч.: краевое стояние – адгезия – прохождение через стенку (3-6 мин) – хемотаксис и электротаксис (H + , Na + , K + , Ca 2+ , Mg 2+ , мицеллы белка) – фагоцитоз.

ИЗМЕНЕНИЕ ОБМЕНА ВЕЩЕСТВ при ВОСПАЛЕНИИ:

Углеводный : резкое повышение энергопотребления и застой крови, повреждения митохондрий ведет к нехватке О 2 и снижению процессов окисления, резко активируется гликолиз (при снижении АТФ и повышении АДФ с АМФ) и повышается молочная кислота, пировиноградная и др. (характерно отсутствие эффекта Пастера – нет кислородного торможения анаэробного расщепления углеводов).

Жировой : усиление липолиза (высвобождение лизосомальных липаз и фосфолипаз из поврежденных клеток и лейкоцитов и их активация в кислой среде) в очаге повышает количество свободных жирных кислот (ЖК ) , а также извращается обмен с появлением местно кетоновых тел (КТ), появление продуктов перекисного окисления липидов (ПОЛ ), фосфолипазы активируют образование арахидонатов - медиаторов воспаления – лейкотриенов и простагландинов .

Белковый : увеличение протеолиза , образование биоактивных пептидов , повышение онкотического давления – отек и набухание ткани.

Ионы и вода : трансмембранный дисбаланс: выход К + и Mg 2+ и вход в клетки Na + и Ca 2+ , нарушает функции и энергетику ткани, гидратация ткани и нарушение функции потенциала клеток.

Ацидоз : типичен в очаге В.: недоокисленные соединения (молочная кислота, высшие жирные кислоты и кетоновые тела) из-за гликолиза, липолиза, протеолиза (аминокислоты); местная ишемия ; стаз крови; истощение буферных систем со временем. Ацидоз ведет к: повышению проницаемости сосудов и отеку , повышению проницаемости мембран клеток и набуханию ткани, активации ферментов лизосом , боли , изменяет чувствительность к биоактивным веществам и их эффекты (снижается чувствительность к адреномиметикам и повышается к холиномиметикам), усиливается гидролиз белка – гиперонкия - отек, усиление гидролиза различных веществ – гиперосмия – отек. Гиперосмия : повышение протеолиза, гидролиза макромолекул, распад клеток. Ведет к : гипергидратации очага, повышению проницаемости сосудов, стимуляции миграции лейкоцитов (хемотаксис), изменению тонуса сосудов, боли.

Гиперонкия : ферментативный и неферментативный гидролиз белков, изменение конформации белков и мицелл с повышением гидрофильности при присоединении ионов в очаге воспаления, выход альбумина из сосудов. Ведет к : отеку в очаге.

Физико - химические реакции : молочные и жирные кислоты закисляют очаг В.: первичный ацидоз как результат ишемии, затем при артериальной гиперемии – длительный метаболический ацидоз вначале компенсированный и затем декомпенсированный. Протеолиз повышает онкотическое местное давление; лизис и некроз ведут к повышению осмотического давления и выходу внутриклеточного К + , это ведет к повышению тургора и отеку ткани.

Схема 3. Механизмы воспаления (НАРУШЕНИЯ ОБМЕНА)

УГЛЕВОДЫ: гликолиз  молочнокислый ацидоз

ЖИРЫ: ЖК и КТ, ПОЛ, ПГ и ЛТ

БЕЛКИ: протеолиз  БАВ (пептиды) и гиперонкия

ИОНЫ,ВОДА: выход K + и Mg 2+ вход в клетку Na + и Ca 2+  гиперосмия

В ткани наблюдаются:

АЦИДОЗ: вследствие : ишемия, стаз, метаболизм (лактат), лизосомы

Ведет : отек, набухание, боль, гиперонкия, гиперосмия, извращ.реакц.

ГИПЕРОНКИЯ: вследствие : гидролиз белков, выход альбумина

ведет к: отек в очаге воспаления

ГИПЕРОСМИЯ: вследствие : протеолиз и гидролиз белка, лизис кл.

ведет к: гипергидратация, миграция лейкоц., транссудация, боль

Биоактивные вещества при В.(медиаторы В.): изменяют обмен, местную сосудистую реакцию, ведут к альтерациии, повышению сосудистой проницаемости, стимулируют пролиферацию. Это:

лизосомальные ферменты (гидролазы и липазы, фосфолипазы);

простагландины (Фосфолипаза А + фосфолипиды мембран – арахидоновая к-та – циклооксигеназа – простагландины) – ускоряют кровоток, повышают проницаемость тканей и эмиграцию лейкоцитов, участвуют в развитии лихорадки, усиливают влияние брадикинина на сосуды; через циклические нуклеотиды регулируют интенсивность В.:(ПГЕ – цАМФ – снижает, ПГФ – цГМФ – повышает В.);

лейкотриены : длительное сокращение гладкомышечных клеток ведет к ишемии, лабилизации мембран лизосом и повышает В.

Группа активных пептидов : вызывают повышение температуры, некроз, лейкоцитоз, стимуляцию пролиферации.

Цитокины : интерлейкин-1-4, 6 и 8 – стимулируют хемотаксис фагоцитов, синтез простагландинов, адгезию эндотелиоцитов, стимулируют пролиферацию, микротромбы и лихораду.

Белки острой фазы – стимулируют хемотаксис и выход гранулоцитов из костного мозга.

Катионные белки : из гранулоцитов, неспецифическая бактерицидная активность, стимуляция эмиграции лейкоцитов, повышение проницаемости сосудов.

Фибронектины : синтез многими клетками – опсонизируют объекты фагоцитоза и активируют хемотаксис лейкоцитов.

Н ейромедиаторы : адреналин и норадреналин (активация гликолиза, липолиза, липопероксидации - ПОЛ, спазм артериол - ишемия), ацетилхолин (снижение тонуса артериол – гиперемия, эмиграция лейкоцитов, пролиферация клеток).

Биогенные амины : гистамин (из тучных клеток – боль, жжение, повышение проницаемости сосудов, миграция клеток) и серотонин (из тромбоцитов и тучных клеток – боль, повышение проницаемости сосудов, сокращение венул – венозная гиперемия, способствует тромбообразованию).

Окись азота (синтез эндотелием – нормальная вазидилятация). Продукты ПОЛ -свободно-радикального и перекисного окисления липидов и Н 2 О 2 – токсические и регуляторные эффекты.

Нуклеотиды и нуклеозиды (АДФ, аденозин): АДФ стимулирует адгезию, агрегацию и агглютинацию – тромбообразование, сладж, стаз, ишемию (в венулах – гиперемию).

Плазменные медиаторы : кинины (каллидин, брадикинин) – повышение проницаемости сосудов сильнее гистамина, потенцирование отека, эмиграции лейкоцитов; факторы комплемента – хемотаксис, опсонизация, цитолиз, бактерицидный эффект, регуляция синтеза кининов и иммунитета и гемостаза; свертывающей системы (про- и анти-коагулянты, фибринолитики) – результат повреждения стенки сосудов; ведет к: тромбозы и стаз, ишемия, венозная гиперемия.

ФАГОЦИТОЗ : поглощение и переваривание корпускулярных частиц (инородных – изначально или становящихся такими).

Главные типы клеток – нейтрофильные полиморфонуклеары .

Важнейшие нормальные механизмы Фагоцитоза: полимеризация -деполимеризация микротрубочек цитоскелета под действием цАМФ-цГМФ и Са 2+ ведут к пиноцитозу и вторичным фаголизосомам.

СТАДИИ : 1-я - Адгезия к эндотелию (при его повреждении), образование псевдоподий и проникновение между эндотелиальными клетками, лизис базальной мембраны сосуда коллагеназой и выход фагоцита в ткань.

2-я – Хемотаксис к объекту фагоцитоза: положительный хемотаксис – на полипептиды и пр. цГМФ усиливает, цАМФ подавляет его. В ходе движения идут изменения цитоплазмы типа гель-золь – в передней части фагоцита и перетекание кортикального геля по микротрубочкам; действуют также актин-миозиновые сократительные филаменты. Ф. – энергозависим (гликолиз в основном).

3-я: Прилипание к фагоцитируемому агенту – от электрических зарядов ткани и фагоцита и др.

4-я – Погружение агента в фагоцит (инвагинация оболочки) – от электрических зарядов и поверхностного натяжения, антител – опсонинов .

5-я: Переваривание : в пищеварительной вакуоле сдвиг рН и сливание с лизосомами, метаболический взрыв - АФК. Возможен и выброс гранул из фагоцита наружу.

Незавершенный фагоцитоз – микроорганизмов с полисахаридной капсулой, ведет к хронизации инфекции (ТВС например).

ПРОЛИФЕРАЦИЯ : увеличение стромы, часто паренхимы (регенерация) и межклеточного вещества в очаге В. , способствует регенерации и заживлению после альтерации. Хорошая регенерация: печень, кожа, слизистая, кость); слабая: сухожилия, связки, хрящь; нет регенерации: миоциты, нейроны – заменяются на соединительную ткань (рубец). Активация П. – при снижении воспаления: ингибиторы протеаз, антиоксиданты, полиамины, глюкокорткоиды, гепарин.

Регуляторы П.: медиаторы воспаления (фактор некроза опухоли, лейкотриены, кинины, биогенные амины); лимфокины, факторы роста (в т.ч. тромбоцитов); полиамины; гормоны (СТГ, инсулин, глюкагон, стероиды), венозная гиперемия стимулирует заживление ткани.

Хроническое воспаление : 1-ичное (сразу) и 2-ичное (затухающее). Проявление : грануломы (туберкулез, бруцеллез), инфильтрация мононуклеарами очага В., образование фиброзной капсулы и кальцификация , некроз в центре очага В.

Причины : недостаточность фагоцитоза, длительный стресс (катехоламины и глюкокортикоиды), повторные повреждения ткани, персистирующая инфекция, аутоиммунная агрессия.


А также другие работы, которые могут Вас заинтересовать

82532. Особенности памяти у детей с задержкой психического развития (ЗПР) 25.5 KB
У детей с психофизическим инфантилизмом наблюдаются: уменьшение объема и скорости запоминания; неумение рационально организовать и контролировать свою работу; преобладание зрительной памяти над слуховой; У детей с ЗПР соматогенного генеза отмечается недоразвитие кратковременной памяти проявляющееся в снижении скорости запоминания в медленном нарастании продуктивности запоминания снижении объема памяти. У детей с ЗПР церебральноорганического генеза наблюдаются разнообразные нарушения памяти: повышенная тормозимость следов под...
82534. Особенности памяти у детей с нарушениями слуха 36 KB
Образный материал глухие школьники непосредственно запоминают более успешнее чем слышащие так как у них зрительный опыт богаче. Но в то же время можно встретить в литературе данные что в дошкольном возрасте глухие хуже запоминают места расположения предметов в младшем школьном возрасте путают места расположения предметов сходных по изображению или реальному функциональному назначению. Глухие школьники младших классов применяют вспомогательные средства для запоминания. При запоминании ряда сходных предметов глухие плохо умеют...
82535. Особенности памяти у детей с нарушениями опорно-двигательного аппарата 33 KB
При обследовании и лечении детей с ДЦП в возрасте от года до 15 лет выявлено что недостаточность ВПФ по типу психического недоразвития и ЗПР отмечена в среднем в 407 случаев. Анализ особенностей памяти у детей с диплегической формой ДЦП показал что ребята лучше запоминали смысловые структуры чем изолированные цифры и слова. При гиперкинетической форме ДЦП у детей выявлены трудности запоминания в слухоречевой модальности.
82536. Особенности памяти у детей с нарушениями интеллекта 28.5 KB
Замский умственно отсталые дети усваивают новое очень медленно быстро забывают воспринятое не умеют вовремя воспользоваться приобретёнными знаниями и умениями на практике. Ослабление активного внутреннего торможения обусловливающее недостаточную концентрированность очагов возбуждения делает воспроизведение учебного материала многими умственно отсталыми детьми крайне неточным. Чаще всего физиологической основой забывчивости умственно отсталых детей является не угасание условных связей как при обычном забывании а временное внешнее...
82537. Особенности памяти у детей с нарушениями речи 40 KB
Наиболее специфична следовательно значима для развития речи слуховая память. Без моторной памяти невозможно освоение экспрессивной речи устной и письменной. Зрительная память необходима для освоения письменной речи а также для связи между первой и второй сигнальной системами.
82538. Мышление, его виды и мыслительные операции 35 KB
В зависимости от характера деятельности и ее конечных целей доминирует тот или иной вид мышления. Однако по степени своей сложности по требованиям которые они предъявляют к интеллектуальным и другим способностям человека все виды мышления не уступают друг другу. Виды мышления: Нагляднодейственное мышление представляет собой совокупность способов и процесс решения практических задач в условиях зрительного наблюдения за ситуацией и выполнения действий с представленными в ней предметами. Необходимые для мышления образы представлены в...
82539. Особенности мышления у детей с нарушениями речи 30 KB
Одним из самых трудных является вопрос о первичности речи и мышления об оценке структуры мышления у лиц с речевыми расстройствами. Практика и экспериментальные исследования показывают что мышление страдает в наибольшей степени при системных нарушениях речи алалии препятствующей его развитию и афазии затрудняющей его проявление. Важное практическое значение имеют достаточно часто встречающиеся особенно в последнее время сочетания расстройств речи и мышления.
82540. Особенности мышления у детей с ДЦП 32.5 KB
Зачастую нагляднообразное и словеснологическое мышление начинает развиваться практически без фундамента нагляднодейственного мышления. Недостаточность нагляднодейственного мышления приводит к недостаточности в формировании других более сложных форм мыслительной деятельности. Нагляднообразное мышление обычно формируется на основе нагляднодейственного мышления и чувственного опыта ощущения и восприятие.

Воспаление (inflamatio) - выработанный в ходе эволюции типовой патологический процесс, в основе которого лежит местная реакция целостного организма на действие повреждающего (флогогенного) раздражителя, проявляющаяся на месте повреждения ткани или органа деструкцией клеток, изменениями кровообращения, повышением сосудистой проницаемости в сочетании с пролиферацией тканей.

Возникновение и развитие воспаления определяется двумя факторами - местным повреждением ткани или органа (альтерация) и реактивностью организма. Все факторы, способные вызвать местное повреждение и развитие воспаления, получили название флогогенных (греч. phlogosis - воспаление).

Этиология воспаления

Флогогенные факторы подразделяются на две основные группы: экзо- и эндогенные. К экзогенным факторам относятся механические, физические, химические, биологические, иммунологический конфликт, возникающий при действии аллергена на сенсибилизированный организм. К эндогенным флогогенам относят отложение солей, тромбоз, эмболию и др. Деление флогогенов на экзо- и эндогенные условное, ибо все так называемые эндогенные флогогены возникают в результате экзогенных влияний.

В зависимости от причины, вызывающей воспаление, последнее подразделяется на инфекционное, неинфекционное (асептическое) и аллергическое.

Признаки воспаления

При анализе развития воспаления можно выделить морфологические, физико-химические и клинические признаки (табл. 1).

Первые четыре клинических признака воспаления были описаны Цельсом (25 г. до н.э.- 45 г. н.э.). Пятый клинический признак добавлен Галеном (130-210 г. н. э.). Важный вклад в изучение физико-химических признаков воспаления внес Шаде; расстройства кровообращения, в том числе микроциркуляции и реологических свойств исследованы в работах Ю. Конгейма и советских ученых В. А. Воронина, А. М. Чернуха, Д. Е. Альперна и их учеников.

  • Альтерация и ее патофизиологические механизмы [показать] . Явления альтерации прогрессируют по мере формирования физико-химических арушений в очаге воспаления.

    Для понимания патогенеза воспаления важно знать, какие структуры органа или ткани повреждаются при действии флогогенных факторов. Четкому представлению об этом способствует концепция А. М. Чернуха о функциональном элементе органа. Согласно этой концепции, функциональный элемент представляет "пространственно ориентированный структурнофункциональный комплекс", в состав которого входят специализированные (например, печеночные, нервные, мышечные) соединительно-тканные клеточные элементы, кровеносное и лимфатическое микроциркуляторное русло, рецепторы, афферентные и эфферентные нервные проводники. Функциональный элемент регулируется нервной, эндокринной системами и гуморальными медиаторами. По современным представлениям регуляция его осущевтвляется преимущественно гуморальным путем.

    По мнению А. М. Чернуха, деятельность функционального элемента обусловлена наличием локальных и циркулирующих медиаторов. Локальные медиаторы образуются тучными клетками и тромбоцитами (гистамин, серотонин). Особое место занимают тромбоксаны и простагландины. Последние содержатся в неактивном состоянии в любой клетке (за исключением эритроцитов) и активируются при ее повреждении. Норадреналин и ацетилхолин, образующиеся в адрен- и холинэргических нервных окончаниях, также относятся к локальным медиаторам. В процессе жизнедеятельности выделяются также биологически активные вещества полиморфноядерными лейкоцитами, лимфоцитами, макрофагами.

    Циркулирующие медиаторы представлены кининами, фибринолитической системой и системой комплемента.

    При действии различных флогогенов на функциональный элемент органа возникают метаболические и структурные нарушения различной степени выраженности - от небольших и обратимых до обширных, приводящих к гибели клеток. Выделяют два патогенетических механизма острого летального повреждения клетки (А. М. Чернух, 1979) - нарушение транспортных систем и биоэнергетики клетки. Полагают, что даже длительное и значительное нарушение синтеза белка, нуклеиновых кислот без повреждения мембран не ведет к гибели клеток.

    Таким образом, при действии флогогенного фактора в первую очередь повышается проницаемость клеточных мембран и ее органелл (митохондрий, лизосом, эндоплазматического ретикулума). Калий выходит из клетки, а натрий и вода поступают в клетку и ее органеллы, следствием чего является их набухание. Набухание митохондрий сопровождается разобщением дыхания и окислительного фосфорилирования и снижением образования макроэргов, которые особенно необходимы для поддержания натрий-калиевого баланса в клетке. Последние изменения усугубляют нарушения электролитного обмена, и отечность клеток и ее органелл нарастает. Это ведет к разрыву мембран клеток, митохондрий, лизосом и поступлению из последних около 40 гидролитических ферментов, способных вызывать расщепление белков, жиров и углеводов. Лизируются мембраны органелл, ядра, что и ведет к фрагментации клетки.

    Большинство исследователей (А. Д. Адо, 1973; А. И. Струков, 1972; и др.) подчеркивают, что под влиянием воспалительного фактора (особенно в период формирования артериальной гиперемии) в пораженном участке повышается потребление кислорода, наблюдается увеличение обмена веществ и последующее его снижение по мере усугубления расстройств кровообращения. С указанных первичных альтеративных изменений и начинается острое воспаление.

  • Физико-химические нарушения в очаге воспаления [показать]

    В настоящее время показано важное значение в развитии воспаления нейтрофилов и макрофагов. Из них лизосомальные ферменты освобождаются не только при разрушении клеток, но и при действии на них С 3а и С 5а компонентов комплемента. При этом клетка не погибает. Медиаторы воспаления, иммунные комплексы в присутствии комплемента так же, как и комплемент, стимулируют процесс дегрануляции лизосом. В то же время ЦАМФ, колхицин, простагландин Н угнетают освобождение лизосомальных ферментов, тормозя, таким образом, дальнейшее развитие воспаления (А. Хорст, 1982).

    Хорошо известно, что в клетке содержится в 30 раз больше калия, чем в межклеточном пространстве, и поэтому при разрушении клеток в очаге воспаления нарастает количество калия и формируется такой физико-химический признак воспаления, как гиперкалиемия. Степень выраженности гиперкалиемии зависит от интенсивности повреждения клеток. Описаны увеличения калия в очаге воспаления в 10-20 раз (Шаде).

    В результате повышения активности гидролитических ферментов, а также возникающей позже вследствие нарушения микроциркуляции гипоксии и преобладания липолиза накапливаются кислоты-молочная, пировиноградная, аминокислоты, жирные кислоты и др. pH в очаге воспаления постепенно уменьшается, и развивается Н-гипериония. Гидролиз белков, жиров и углеводов и рост количества молекул в очаге воспаления обеспечивают увеличение осмотического давления.

    Распад клеточных элементов и возникающее позже повышение проницаемости и выход в очаг воспаления из кровеносного русла белков крови, несмотря на преобладание протеолиза за счет ферментов лизосом клеток, вызывают повышение онкотического давления в очаге воспаления.

    Сразу же после действия флогогенных факторов наряду с вышеописанными физико-химическими изменениями происходит накопление количества биологически активных веществ, оказывающих влияние на сосуды микроциркуляторного русла, клеточные реакции очага воспаления. Все медиаторы воспаления оказывают влияние на диаметр и проницаемость сосудов микроциркуляторного русла, на хемотаксис и фагоцитоз.

    Первыми медиаторами, образующимися при дегрануляции тучных клеток, базофилов и разрушении пластинок, являются гистамин и серотонин. Важным биологическим эффектом их является расширение сосудов, повышение проницаемости капилляров и венул. Гистамин выделяется только в начале воспаления (в течение часа), а затем исчезает.

    При повреждении флогогенными факторами эндотелия сосудов происходит активация XII плазменного фактора свертывания крови (фактора Хагемана) и ряда протеолитических ферментов (особенно плазмина), следствием чего является образование из α 2 -глобулина крови низкомолекулярных соединений, называемых кининами. Их представителями являются каллидин и брадикинин. Это типичные медиаторы воспаления, ибо, действуя на микрососудистое русло функционального элемента, расширяют сосуды, повышают их проницаемость и принимают участие в формировании болевого ощущения. Показано, что в сравнении с гистамином брадикинин в три раза сильнее повышает проницаемость и является самым мощным болевым агентом (А. Хорст, 1982).

    Активация ферментов крови при воспалении носит цепной и даже каскадный характер, при этом каждый последующий этап идет быстрее предыдущего, и реакция протекает по аутокаталитическому варианту. В этой связи приобретают важное значение ингибиторы. Дефицит ингибиторов воспаления может облегчать возникновение и утяжелять течение воспаления. Например, дефицит ингибитора С 1 комплемента или С 1 эстеразы ведет к чрезмерной активации системы комплемента с высвобождением анафилотоксина, гистамина и других медиаторов, повышающих проницаемость кровеносных сосудов (А. Хорст, 1982).

    Хорошо известно, что в любой клетке (кроме эритроцитов) содержатся в неактивном состоянии простагландины. При повреждении клеток происходит их активация. Медиаторную функцию при воспалении выполняют простагландины E 1 и Е 2 . Они образуются из арахидоновой и линолевой кислот под действием фермента простагландинсинтетазы. Простагландины очень нестойкие вещества и при прохождении через легкие теряют 98% своей активности.

    Некоторые простагландины тормозят агрегацию тромбоцитов, выделение из них серотонина, а также стимулируют образование ЦАМФ, что предотвращает дегрануляцию тучных клеток и выделение гистамина. Все эти реакции тормозят развитие воспаления. В плазме крови человека обнаружен естественный ингибитор простагландинов. Под влиянием глюкокортикоидов он активируется и, ингибируя синтез простагландинов, тормозит воспаление (А. Хорст).

    Анализируя образование медиаторов воспаления, исследователи считают, что на самых ранних этапах воспалительной реакции выделяются гистамин и серотонин, несколько позже за счет активации калликреин-кининовой системы образуются каллидин и брадикинин. Выделение простагландинов происходит на более поздних этапах воспаления.

    Наряду с вышеописанными при аллергическом воспалении образуются медленно реагирующее вещество анафилаксии (МРС-А) и вещество Р, вызывающие повышение проницаемости сосудов.

    Лейкоциты очага воспаления выделяют пептиды, получившие название лейкокининов, основным эффектом которых является повышение проницаемости сосудов и снижение системного артериального давления.

    Установлена важная роль комплемента в механизме воспаления. Активация комплемента происходит в очаге воспаления антителами крови и С-реактивным белком, образующимся при воспалении, а также веществами бактериального происхождения (липополисахариды, эндотоксины) и др. Активация системы комплемента представляет ферментативный процесс, вследствие чего на мембранах клеток образуются такие медиаторы воспаления, как С 2a , С 3a , С 5a , обладающие свойствами кининов, хемотаксиса, анафилатоксина; они освобождают лизосомальные ферменты и активируют фагоцитоз, и, в конечном итоге, активированный комплемент приводит к лизису клеток (А. Хорст, 1982).

    Кроме медиаторов, влияющих на процессы микроциркуляции, проницаемость сосудов и формирование боли, в очаге воспаления образуются медиаторы, стимулирующие хемотаксис и фагоцитоз. В последнее время показана исключительно важная роль ПМЯ-лейкоцитов в патогенезе воспаления, особенно в повышении проницаемости, некроза и кровоизлияний, что подтверждается торможением указанных эффектов в условиях лейкопении. Механизм патогенных эффектов связан с образованием в результате их дегрануляции катионных белков или полипептидов, протеаз, кининов, МРС-А.

    Катионные белки вызывают дегрануляцию тучных клеток. При фагоцитозе ПМЯ-лейкоциты выделяют фактор проницаемости. Кислые протеазы или катепсины лизосом ПМЯ-лейкоцитов и коллагеназа гидролизуют белки и преципитаты антиген - антитело с образованием активных полипептидов.

    В результате физико-химических изменений и особенно образования медиаторов воспаления происходят расстройства микроциркуляции и реологических свойств крови в очаге воспаления.

  • Нарушения микроциркуляции и гемореологии в очаге воспаления [показать]

    А. М. Чернух (1979), А. И. Струков (1982) выделяют три стадии расстройств кровообращения:

    • 1 стадия - кратковременный спазм и последующее формирование артериальной гиперемии;
    • 2 стадия - венозная гиперемия;
    • 3 стадия - стаз крови.

    Флогогенные факторы вызывают раздражение рецепторов функционального элемента и рефлекторное сокращение артериол и прекапиллярных сфинктеров, обеспечивая кратковременную ишемию (в течение 5-10 с до 5 мин.). Развитие ее обусловлено также действием катехоламинов и, вероятно, серотонина, выделяющегося из агрегированных в микрососудах тромбоцитов. Однако образующиеся очень быстро гистамин, кинины, простагландины и другие медиаторы воспаления расширяют артерии и артериолы и обеспечивают формирование артериальной гиперемии. Важная роль в развитии артериальной гиперемии и ее поддержании принадлежит изменению чувствительности α-адренорецепторов сосудов. По данным А. Н. Гордиенко (1955), Zweifach (1955), прекапиллярные сфинктеры сокращаются на аппликацию адреналина 1:25000. При воспалении же в связи с ацидозом, дизионией сосудосуживающий эффект сфинктеров снижается. Такое снижение реакции на адреналин и симпатические влияния способствует расширению артериол и прекапиллярных сфинктеров и формированию артериальной гиперемии воспалительного происхождения. Воспалительная гиперемия может развиваться также при раздражении рецепторов по типу аксон-рефлекса.

    Артериальная гиперемия характеризуется увеличением линейной и объемной скорости кровотока, количества функционирующих капилляров. Возрастает гидростатическое давление. Так, по данным Цвайфаха, кровяное давление увеличивается в мелких артериях на 35, артериолах - на 25, капиллярах - на 7, венулах - на 9 см водного столба. Увеличение притока крови, богатой кислородом, способствует усилению окислительно-восстановительных процессов и теплообразования. Поэтому в стадии артериальной гиперемии субъективно и объективно регистрируется повышение температуры в очаге воспаления.

    Медиаторы воспаления повышают проницаемость сосудов и выход в очаг воспаления воды и белков различного молекулярного веса в следующей последовательности: альбумины, глобулины, фибриноген. Этот процесс ведет к сгущению (гемоконцентрации), увеличению динамической вязкости и, следовательно, ухудшению текучести крови.

    В результате скопления жидкости, а позже и форменных элементов в ткани сдавливаются лимфатические и кровеносные сосуды, что затрудняет отток крови. Кроме того, в сосудах развивается агрегация форменных элементов, склеивание их и формирование сладжей. Параллельно с этим активируется свертывающая система крови с образованием тромбов и эмболов. Все эти изменения способствуют дальнейшему нарастанию динамической вязкости крови и ухудшению реологических свойств ее.

    Причиной образования микротромбов и кровоизлияний часто является прямое повреждение стенки сосудов, а также действие медиаторов (лизосомальных ферментов, трипсина, брадикинина, каллидина). Кровоизлияния в значительной степени являются следствием повреждения сосудов протеолитическими ферментами, особенно ПМЯ-лейкоцитов. Эритроциты покидают сосуды через межэндотелиальные пространства.

    В стадии венозной гиперемии нарушается отток крови из очага воспаления, следствием чего является уменьшение линейной и объемной скорости кровотока, дальнейшее нарастание гидростатического давления, развитие толчкообразного и маятникообразного движения крови, что связано с повышением сопротивления току крови. В конечном итоге происходит остановка (стаз) движения крови. Стаз первоначально регистрируется в отдельных капиллярах и венулах, в последующем он охватывает все больше сосудов.

    Позже всего стаз развивается в артериолах. В зависимости от тяжести воспаления стаз может быть кратковременным или сохраняться в течение часов и дней.

  • Экссудация [показать]

    Типы и характеристика эксудатов

    В зависимости от состава (качества и количества белков, форменных элементов) выделяют серозный, фибринозный, геморрагический, гнойный эксудат. Если каждый из перечисленных эксудатов инфицируется гнилостными микроорганизмами, то он превращается в гнилостный эксудат.

    • Серозный эксудат [показать]

      Серозный эксудат нередко образуется при воспалении серозных полостей организма (плевральной, брюшинной, оболочек мозга, яичек и т. д.), при котором нарушения проницаемости и эмиграция лейкоцитов проявляются нерезко. Это также наблюдается при аллергическом воспалении, укусах насекомых, при ожогах волдырной стадии и др. Удельный вес такого эксудата больше, чем 1,018, обнаруживаются белки типа альбуминов и глобулинов, pH снижается только до 7,2, количество лейкоцитов около 3000 в 1 мкл. Осмотическое давление, определяемое по точке замерзания, повышается (АС 0,6-1°). Если при воспалении накапливается много слизи, говорят о катаральном воспалении.

    • Фибринозный эксудат [показать]

      Образуется при дифтерии, скарлатине, дизентерии, когда проницаемость сосудов повышается более резко и в эксудате накапливается крупномолекулярный белок крови - фибриноген. В очаге воспаления от может свертываться с образованием фибриновой пленки.

    • Геморрагический эксудат [показать]

      Возникает при резком повреждении сосудистой стенки, что ведет к выходу из сосудов эритроцитов и образованию кровоизлияний. Геморрагический эксудат наблюдается при чуме, сибирской язве, феномене Шварцмана, Артюса.

    • Гнойное воспаление [показать]

      Возникает при обширных воспалительных процессах, особенно вызванных стрепто-, стафилококками и другими биологическими флогогенами. Образующиеся при этом хемотаксические вещества способствуют выходу большого количества лейкоцитов и лейкоцитарной инфильтрации. В результате резкого снижения pH многие полиморфноядерные лейкоциты гибнут, а при pH 6,7 гибнут все виды лейкоцитов. Из лизосом выделяется большое количество гидролитических ферментов, которые и вызывают лизис лейкоцитов, расщепление белков, жиров и углеводов. Возникает гнойное расплавление и образование гноя. В гное содержатся преимущественно нейтрофильные лейкоциты на различных стадиях разрушения. Они и представляют собой так называемые гнойные тельца. Гнойное воспаление характерно для фурункула, карбункула, флегмоны, абсцесса, эмпиемы. Гнойному воспалению могут подвергаться и слизистые оболочки. В гное нередко содержатся колонии микроорганизмов, грибки.

    Механизмы эксудации

    Эксудация - это выход жидкой части крови в очаг воспаления. Установлены две фазы повышения проницаемости (Г. 3. Мовэт, 1975).

    1. Мгновенно нарастающая проницаемость сосудов, обусловленная действием вазоактивных медиаторов.
    2. Поздняя (замедленная и продолжительная) сосудистая проницаемость (в течение часов), связанная с преимущественным действием ПМЯ-лейкоцитов.

    Гранулы их содержат ряд биологически активных веществ, которые освобождаются при дегрануляции и фагоцитозе. Процесс накопления ПМЯ-лейкоцитов и дегрануляции их длителен. Вот почему они и обеспечивают замедленную фазу повышенной сосудистой проницаемости. Поздняя фаза подавляется на фоне экспериментально воспроизведенной лейкопении.

    Эксудация в очаге воспаления обусловлена как прямым повреждением сосудов микроциркуляторного русла, так и эффектами медиаторов воспаления.

    Эксудация осуществляется тремя путями; через межэндотелиальные щели, размер которых увеличивается за счет сокращения микрофиорилл эндотелиальных клеток, через тело эндотелиальных клеток по специализированным каналам, а также микропинопитозом в виде активного проведения мельчайших капель через тело клетки. Чтобы подчеркнуть именно процесс проведения жидкости, предложен термин цитопемсис (клеточное всасывание или проведение, передача с помощью клеток). До настоящего времени остается не совсем ясным выход воды и растворов через базальную мембрану капилляров.

    По механизму развития эксудация обусловлена прежде всего эффектами медиаторов воспаления (гистамин, серотонин, кинины, простагландины и др.), а также ПМЯ-лейкоцитами. Важное значение имеет и увеличение гидростатического давления. Например, при застойных явлениях проницаемость повышается всего лишь на 2-4%, но в условиях воспаления сочетание с повышением проницаемости, вызванной медиаторами, является существенным фактором эксудации.

    На более поздних этапах воспаления эксудация обусловлена увеличением осмотического и онкотического давления в тканях.

    При эксудации вода, соли, мелкие молекулы (мол. масса 1000) свободно проходят через поры эндотелиальных клеток. Макромолекулы транспортируются в виде пиноцитозных пузырьков эндотелия или через межэндотелиальные щели.

    Важное значение в развитии воспалительного отека принадлежит лимфатическому микроциркуляторному руслу. Имеются непостоянные связи внесосудистых тканевых каналов интерстиция с терминальными лимфатическими капиллярами. При наполнении каналов межтканевой жидкостью они как бы опорожняются в межэдотелиальные отверстия, спадаются и отделяются от капилляров, а межэндотелиальные щели закрываются. Считают (А. И. Струков, 1983), что благодаря этому регулируется фильтрация, реабсорбция тканевой жидкости, белков, солей и поддерживается гомеостаз. При воспалении повреждается эндотелий первичных лимфатических капилляров. Это ведет к отхождению внесосудистых тканевых каналов от межэндотелиальных щелей, лимфа выходит в ткань. Таким образом, в раннем периоде формируется и остается выраженным до конца воспаления лимфатический отек.

    Начиная со стадии артериальной гиперемии и особенно в стадии венозной гиперемии и стаза лейкоциты покидают сосудистое русло. Выход лейкоцитов из сосудов в очаг воспаления называется эмиграцией лейкоцитов.

  • Эмиграция лейкоцитов [показать]

    Пути и механизмы эмиграции лейкоцитов . Еще И. И. Мечников, изучая последовательность выхода лейкоцитов, отметил, что первыми в очаге воспаления появляются полиморфноядерные лейкоциты, затем моно- и лимфоциты. Выходу лейкоцитов предшествуют пристеночное движение и пристеночное стояние лейкоцитов, наблюдаемые особенно отчетливо в стадии венозной гиперемии. Это явление объясняют снижением отрицательного заряда лейкоцитов, а также пристеночным микросвертыванием, в результате чего микрофибриллы тормозят движение лейкоцитов и способствуют их пристеночному стоянию.

    По современным данным, лейкоциты эмигрируют двумя путями: полиморфноядерные лейкоциты выходят через межэндотелиальные щели, а мононуклеары (моно- и лимфоциты) через тело эндотелиальных клеток. Последний процесс более длителен и в какой-то мере объясняет, почему мононуклеары позже появляются в воспаленном участке. Выход ПМЯ-лейкоцита продолжается 2-8 минут. Процесс эмиграции ПМЯ-лейкоцитов достигает наибольшей интенсивности через 6 часов (Г. 3. Мовэт, 1975; Е. Р. Кларк, Е. Л. Кларк, 1935). Мононуклеары начинают эмигрировать через 6 часов с максимумом их выхода через 24 часа после повреждения. Соотношение между полиморфноядерными лейкоцитами и мононуклеарами в динамике воспаления представлено на рисунке 1;

    Определенное влияние на последовательность эмиграции оказывает и pH очага воспаления. По данным Менкина, при pH, равной 7,4-7,2, накапливаются полиморфноядерные лейкоциты, при pH 7,0-6,8 - преимущественно моно- и лимфоциты. При pH 6,7 в очаге воспаления гибнут все лейкоциты с образованием гноя.

    Важное значение в эмиграции лейкоцитов принадлежит хемотаксису, т. е. наличию химической чувствительности, обеспечивающей направленное движение лейкоцита к чужеродному предмету или химическому веществу (положительный хемотаксис) или, наоборот, удаление от них (отрицательный хемотаксис) (И. И. Мечников). Формирование хемотаксических факторов происходит при взаимодействии антиген - антитело с образованием термолябильных компонентов комплемента С 3a и C 5a . Применение ингибиторов комплемента предотвращает повреждение сосудов и выход лейкоцитов. Хемотаксис стимулируется стрептокиназой. При этом в результате расщепления С 3a и C 5a образуются хемотаксические факторы молекулярной массой 6000 и 8500, а при активации С 5 , С 6 , С 7 - хемотаксические вещества с еще большим молекулярным весом.

    Хемотаксины появляются также при инфекционном воспалении за счет действия эндотоксинов, при механическом повреждении ткани. В этих случаях отмечено накопление хемотаксического фактора с молекулярным весом около 14000. Хемотаксины образуются также лимфоцитами и в результате распада белков, особенно γ-глобулинов. По мнению А. М. Чернуха (1979), хемотаксис может стимулироваться продуктами метаболизма тканей, бактерий, вирусов, а также рядом факторов плазмы крови (особенно ферментов калликреина и активатора плазминогена).

    Определенное значение в эмиграции лейкоцитов принадлежит изменению их заряда. По данным А. Д. Адо (1961), в крови лейкоциты имеют заряд 14,6 милливольт, а в очаге воспаления всего лишь 7,2 милливольт. Проникшие через эндотелий лейкоциты некоторое время задерживаются перед базальной мембраной и под действием, вероятно, ферментов, особенно коллагеназы, расщепляют участки базальной мембраны и попадают в очаг воспаления, накапливаясь там (А. И. Струков, 1982).

    Таким образом, в результате выхода воды, белков и форменных элементов образуется воспалительный эксудат. Эксудат является следствием только лишь воспалительного процесса.

  • Фагоцитоз в очаге воспаления [показать]

    Важным проявлением воспаления является фагоцитоз, описанный И. И. Мечниковым в 1882 году. Фагоцитоз (от греч. phagein - поглощать) заключается в поглощении и переваривании бактерий, продуктов повреждения и распада клеток. Фагоцитарную активность проявляют микрофаги (нейтрофильные лейкоциты) и макрофаги.

    Выделяют четыре стадии фагоцитоза:

    • 1-я стадия - приближение фагоцита к инородному предмету. Основу этого движения составляют явления хемотаксиса лейкоцитов. Направленному движению лейкоцитов способствует иммуно-1 адгеренция, т. е. образование комплекса антиген - антитело. В качестве антигенов в очаге воспаления выступают бактерии и вирусы с одновременной активацией компломепта С 3а и С5а и образованием хемотаксинов. Как уже говорилось, хемотаксические факторы возникают при повреждении другими флогогенными факторами.
    • 2-я стадия - прилипание фагоцита к объекту. Ему предшествует опсонизация. т. е. покрытие иммуноглобулинами М и G, и фрагментами комплемента С3, С5, С6, С7 бактерий и поврежденных частиц клеток, благодаря чему они приобретают способность прилипать к фагоциту. Процесс прилипания сопровождается усилением метаболической активности лейкоцитов, его аэробного и анаэробного гликолиза и повышением в 2-3 раза поглощения кислорода.
    • 3-я стадия - поглощение фагоцитируемого объекта путем инвагинации фагоцита и образования вакуоли - фагосомы. Образованию фагосомы предшествует повышение метаболизма с активацией НАДН-зависимой оксидазы, что обеспечивает синтез перекиси водорода. В результате дегрануляции лейкоцитов выделяются лизосомальные ферменты и бактерицидные белки. Перекись водорода распадается под влиянием пероксидаз с образованием активной молекулы кислорода, которая взаимодействует с компонентами мембраны клетки, разрушая ее путем перекисного окисления.
    • 4-я стадия - внутриклеточное расщепление и переваривание фагоцитрированных микробов и остатков поврежденных клеток (табл. 2).
    Таблица 2. Ферменты, содержащиеся в гранулах "профессиональных фагоцитов"
    (по А. М. Чернуху, 1979)
    Название фермента ПМЯ-лейкоцит Мононуклеарный фагоцит
    Протеазы:
    катепсины + +
    гистоназа +
    лейкопротеаза +
    коллагеназа + +
    эластаза + +
    Карбогидразы:
    лизоцим + +
    β-глюкуронидаза + +
    гиалуронидаза +
    Липазы:
    кислая липаза + +
    фосфолипаза + +
    РНК-аза + +
    ДНК-аза + +
    кислая фосфотаза + +
    щелочная фосфотаза + +
    Неферменты:
    катионные белки + -
    лейкоцитарный пироген + -
    мукополисахариды + -

    Перевариванию подвергаются только погибшие микробы и клетки. Фагоцитоз осуществляется с помощью гидролитических ферментов (протеазы, карбогидразы, липазы и др.). Наряду с перевариванием инородных объектов и поврежденных клеток под влиянием гидролитических ферментов, выделившихся в фагосому, гибнут и сами фагоциты, являясь источником образования гноя, а продукты разрушения стимулируют процессы пролиферации в очаге воспаления.

    В зависимости от локализации очага воспаления возможно участие различных макрофагов. В соединительной ткани это гистиоциты, в печени - клетки Купфера, в легких - альвеолярные фагоциты, в лимфатических узлах и селезенке - свободные и частично фиксированные макрофаги, в серозных полостях - перитонеальные и плевральные макрофаги, в костной ткани - остеокласты, нервной системе - микроглиальные клетки. Все перечисленные макрофаги являются производными стволовой кроветворной клетки монобластного ряда и обладают высокой фагоцитарной активностью. Считают, что макрофаги воспалительного эксудата накапливаются за счет эмиграции моноцитов (А. И. Струков, 1982). Макрофаги осуществляют фагоцитоз аналогично нейтрофилам и обладают способностью секретировать в очаг воспаления лизосомальные ферменты, плазмин, коллагеназу, эластазу, лизоцим, белки комплемента, интерферон и др. Показано, что моноциты имеют на своей мембране рецепторы для IgG и комплемента, которые после фагоцитоза исчезают и снова появляются через несколько часов. Мембрана моноцитов способна связываться также и с цитофильными антителами (IgE). Макрофагам принадлежит важнейшая роль в очищении очага воспаления от погибших клеток и разрушении веществ антигенной природы, а также в формировании иммунного ответа.

    Исключительное значение фагоцитоза в патогенезе воспаления выявляется особенно отчетливо при его нарушении, ибо даже cлабовирулентные микроорганизмы могут вызывать сепсис. Фагоцитоз в этом случае носит характер незавершенного, и микробы, поступая с лейкоцитами из очага воспаления в различные органы, обеспечивают явление сепсиса. При наследственной энзимопатии, обусловленной рецессивным геном, сцепленным с Х-хромосомой, отмечено снижение активности НАДН-зависимой оксидазы и, как, следствие, дефицит образования перекиси водорода (Н 2 О 2) и, в конечном итоге, не может образовываться активная молекула кислорода. Мембрана бактериальной клетки не повреждается. Фагоцитоз остается незавершенным. Это и ведет к хроническому воспалению, особенно в легких, к деструкции ткани и гибели организма. Нарушения фагоцитоза обнаружены при циррозе печени, гломерулонефрите, что обусловлено активацией ингибиторов хемотаксиса недостаточной эмиграцией лейкоцитов, они могут явиться причиной хронического воспаления или даже сепсиса. Торможение фагоцитоза обнаруживается при сахарном диабете, гиперкортицизме, патологии щитовидной железы.

  • Пролиферация в очаге воспаления [показать]

    В результате эмиграции лейкоциты накапливаются в очаге воспаления, и это явление получило название воспалительного инфильтрата. Лейкоциты выполняют фагоцитарную функцию в течение нескольких часов, а затем погибают. Вначале гибнут нейтрофилы, а позже и макрофаги, но последние до гибели обеспечивают очищение за счет фагоцитоза очага воспаления от микроорганизмов. При гибели клетки выделяют вещества, способные стимулировать пролиферацию клеток. Они получили название трефонов. Под влиянием трефонов начинают размножаться фибробласты, эндотелиальные клетки, которые и образуют так называемую грануляционную ткань, исходом которой и является формирование соединительно-тканного рубца. Тем более что многие специализированные клетки (печеночные, мышечные, нервные) обычно не регенерируют, и поэтому одним из наиболее частых исходов воспаления может быть замещение поврежденных при воспалении клеток зрелой волокнистой соединительной тканью, а в нервной системе глиальными клетками. Таким образом, одним из исходов воспаления является образование рубца.

    Если альтернативные изменения при действии флогогенного фактора незначительные, то воспалительный процесс может завершиться полным восстановлением морфологии и функции органа. Если воспаление (например, легких, печени, мозга, почек) сопровождается нарушениями в организме, несовместимыми с жизнью, то это завершается его гибелью.

Общий патогенез воспаления представлен на схеме 18.

Происхождение клинических признаков воспаления

  • Покраснение (rubor)- обусловлено развитием артериальной гиперемии, увеличением притока крови с повышенным содержанием кислорода, увеличением количества функционирующих капилляров.
  • Припухлость (tumor) - объясняется артериальной и венозной) гиперемией, эксудацией, эмиграцией лейкоцитов.
  • Жар (calor) - обусловлен усилением обмена веществ на ранних стадиях воспаления, притоком крови с более высокой температурой (особенно при воспалении кожи и слизистых, усилением теплоотдачи за счет гиперемии).
  • Боль (dolor) - вызывается раздражением рецепторов в очаге воспаления медиаторами воспаления (особенно кининами и простагландинами, изменением pH, осмотического давления, дизионией, механическим раздражением рецепторов в результате припухлости в очаге воспаления).
  • Нарушение функции (functio laesa). При воспалении отмечены повреждение клеток, нарушение обмена веществ, кровообращения, накопление медиаторов воспаления, изменения электролитного баланса, pH, осмотического и онкотического давления, процессы пролиферации. В этих условиях осуществление функции компонентами функционального элемента, а следовательно, и органа невозможно.

Экспериментальные модели воспаления

В условиях эксперимента можно воспроизвести воспаление при действии любого флогогенного фактора.

  • Инфекционное воспаление моделируется подкожным, внутримышечным, внутриполостным введением живых или автоклавированных кишечной, брюшнотифозной палочек, стрепто-, стафилококка и других микроорганизмов.
  • Асептическое воспаление вызывается введением подкожно или внутримышечно скипидара, бензина, керосина и других веществ.
  • Аллергическое (иммунное) воспаление моделируется более сложно. Животное (кролик, собака, морская свинка) предварительно сенсибилизируется трехкратным введением (подкожно, внутривенно, подкожно) с интервалом в 24 часа сыворотки (бычьей, лошадиной) или двукратно подкожным введением БЦЖ. Через 2-3 недели за счет иммунологических сдвигов наступает максимальная выраженность сенсибилизации. Введение в это время аллергена подкожно, внутримышечно или в любой орган способствует иммунологическому конфликту, что и является причиной аллергического воспаления.

    Для моделирования аутоаллергических воспалительных процессов экспериментальным животным вводят экстракты органов (сердце, почки, мозг) в чистом виде или с наполнителем Фреунда. Именно таким образом происходит моделирование поражений сердца, мозга, почек и других органов.

Реактивность и воспаление

Возникновение и развитие воспаления, а также его исход определяются реактивностью организма. В частности, важное значение в формировании воспаления имеет функциональное состояние нервной системы. В состоянии сна, зимней спячки животных воспаление, хотя и развивается, но менее выражено, ибо ослабляются сосудистые реакции, эксудация и эмиграция лейкоцитов. Описана возможность воспроизведения воспаления у людей с явлениями покраснения и припухлости путем гипнотического внушения. Роль симпатического и парасимпатического отделов вегетативной нервной системы в патогенезе воспаления показана в работах Д. Е. Альперна. Десимпатизация вызывалась у собак справа в поясничной области. Спустя десять дней моделировали воспаление на внутренней стороне обоих бедер путем прикладывания к коже на три минуты плоскодонных пробирок одинакового диаметра с кипятком. На стороне десимпатизации воспаление было выражено сильнее, но меньше было некротических изменений, а процесс заживления наступал раньше (на 4-5 дней) по сравнению с контрольным участком. Аналогичный эффект наблюдался при введении ацетилхолина. При раздражении симпатических нервов воспаление протекает вяло и более длительно. Установлено также торможение воспаления при введении адреналина и симпатомиметика - тетра-гидро-β-нафтил амина.

Эндокринная система, являясь важным механизмом реактивности, также существенно влияет на воспаление. В клубочковой зоне коры надпочечников образуется минералокортикоид альдостерон, который при избыточной секреции изменяет водно-электролитный баланс организма, усиливает и ускоряет течение воспаления, что проявляется в повышении проницаемости сосудов, эксудации, эмиграции и фагоцитозе, пролиферации клеток. Избыточное образование тироксина и трийодтиронина в щитовидной железе и связанное с этим усиление окислительно-восстановительных реакций ускоряет воспаление. Таким образом, альдостерон и гормоны щитовидной железы при их избыточном образовании обладают провоспалительным действием. Наоборот, избыточное введение извне или гиперсекреция в организме глюкокортикоидов оказывает противовоспалительный эффект, ибо эти вещества уменьшают проницаемость мембран, тормозят эксудацию и эмиграцию лейкоцитов, фагоцитоз, образование медиаторов воспаления, угнетают иммунитет в результате торможения митозов, в том числе лимфоидных клеток, и приводят к инволюции тимико-лимфатической системы. Инсулин сам по себе не оказывает существенного влияния на воспаление, но в условиях его дефицита (например, при сахарном диабете) активируются контринсулярные гормоны, особенно глюкокортикоиды. При этом ослабляется иммунитет и часто возникают грибковые и инфекционные заболевания, особенно фурункулез, который нередко заканчивается летальным исходом. Глюкокортикоиды при этом также тормозят пролиферативные процессы в очаге воспаления.

Недостаточная эффективность иммунологических механизмов у детей и в старческом возрасте, угнетение иммунитета иммунодепрессантами, голодание являются причиной недостаточности воспаления, в результате чего инфекционные процессы протекают атипично или, как в детском возрасте, заканчиваются формированием древней формы инфекционного процесса - сепсисом. Поэтому образование любого гнойного очага на коже ребенка требует немедленного лечения (Н. Т. Шутова, Е. Д. Черникова, 1975).

Общие реакции при воспалении

В зависимости от интенсивности и локализации воспаление может сопровождаться общими реакциями в виде нарушений нервной и эндокринной систем, в том числе симпато-адреналовой и гипоталамо-гипофизарно-надпочечниковой системы, развитием лихорадки, лейкоцитоза, изменением обмена веществ в организме. Обычно при воспалении в результате участия макрофагов в резорбции чужеродных антигенов стимулируется иммунитет. В конечном итоге возможно нарушение функций различных органов и систем организма.

Биологическое значение воспаления

С общебиологической точки зрения воспалительная реакция выработана в ходе эволюции и поэтому является защитно-приспособительной. Уже то, что на смену древней форме инфекционного процесса - сепсису сформировался местный инфекционный процесс в виде воспаления, свидетельствует о защитной роли очага воспаления. Фиксация в очаге воспаления биологических возбудителей происходит вследствие расстройств крово- и лимфообращения в результате фагоцитоза, иммунологических реакций, а также бактерицидного действия эксудата и ферментов на микроорганизмы, которые погибают и резорбируются. Кроме этого, необходимо учесть резко повышенную проницаемость сосудов, в результате чего микроорганизмы и чужеродные вещества могут интенсивно выделяться в очаг воспаления и подвергаться там уничтожению и резорбции. Наконец, защитное значение очага воспаления проявляется и в том, что за счет происходящих в очаге воспаления прилиферации и регенерации осуществляется восстановление функционального элемента, хотя бы даже за счет рубца. В то же время альтерация в очаге воспаления ведет к нарушению специализированных клеточных элементов, которые обычно не регенерируют и замещаются фиброзной тканью с нарушениями функций ткани или органа. Поэтому при воспалении часто используются для лечения противовоспалительные средства.

Общие принципы патогенетической терапии воспаления

Воспаление представляет собой цепь причинно-следственных отношений, где предыдущее звено влияет на последующее и в конечном итоге на пролиферацию, следствием которой является формирование рубцовых (фиброзных) изменений. Поэтому используемые для лечения противовоспалительные средства могут оказывать влияние на одно или несколько звеньев патогенеза воспаления (стабилизацию мембран лизосом, торможение образования медиаторов воспаления, проницаемости сосудов, эмиграции, фагоцитоза и даже пролиферации), ингибируя, таким образом, воспаление в целом.

В зависимости от характера воспаления используется специфическая и неспецифическая терапия. Первая направлена на уничтожение биологического возбудителя (антибиотики, лечебные сыворотки, противотуберкулезные средства и др.), которые обладают как бактерицидным действием, так и, являясь составной частью обмена веществ микроорганизма, нарушают его жизнедеятельность, облегчая разрушение и фагоцитоз. Поэтому уничтожение микроорганизмов или предотвращение действия аллергена являются одной из важных задач в профилактике и лечении инфекционного и аллергического воспаления.

К неспецифическим воздействиям относится влияние измененной температуры, раздражающих веществ на воспаление. Тепло (сухое и влажное, горячий парафин, ультразвук), а также раздражающие средства (горчичники, банки, смазывание скипидаром, йодом) улучшают крово- и лимфообращение, увеличивают гиперемию, эксудацию, эмиграцию лейкоцитов, фагоцитоз, что обеспечивает усиление и ускорение воспаления. Холод, наоборот, тормозит вышеназванные звенья патогенеза воспаления и таким образом угнетает его интенсивность.

Противовоспалительное действие антигистаминных препаратов обусловлено торможением мобилизации или блокадой рецепторов гистамина обменных сосудов, вследствие чего тормозится расширение сосудов и проницаемость, особенно венул.

По мнению А. Поликара (1969), А. М. Чернуха (1979), аспирин, амидопирин, фенилбутазон стабилизируют мембраны лизосом и тормозят образование медиаторов - кининов, простагландинов серотонина, гистамина, фактора проницаемости. Более сильным антивоспалительным действием обладают индометацин и бруфен, которые действуют в 10-30 раз эффективнее фенилбутазона и аспирина. Кроме того, аспирин, фенилбутазон, индометацин предотвращают денатурацию белка и обладают антикомплементарной активностью. Ряд противовоспалительных веществ типа флавоноидов (рутин, венорутон и др.) снижают проницаемость сосудов, улучшают реологию крови и венозное кровообращение.

Для лечения воспаления, особенно аллергического, широко используются глюкокортикоиды, ибо они обеспечивают стабилизацию мембран лизосом, снижение проницаемости, эксудации и эмиграции лейкоцитов, фагоцитоза, угнетают иммунитет и пролиферацию клеток в очаге воспаления, это в целом тормозит воспаление и в то же время является причиной вялого заживления ран. Учитывая указанные выше эффекты, глюкокортикоиды наиболее широко используются при аллергическом воспалении. Иммунодепрессанты (алкилирующие соединения, циклофосфамид, 6-меркаптопурин и др.), тормозя митоз и угнетая иммунитет, подавляют воспаление, особенно аллергическое.

Широкое применение в лечении воспаления нашли протеолитические ферменты - пепсин, трипсин, хемотрипсин. Они наиболее эффективно очищают раневую поверхность и таким образом ускоряют заживление ран и их грануляцию. Наоборот, антипротеазные препараты - ε-аминокапроновая кислота, тразилол, иникрол и другие обладают противовоспалительным действием.

Таким образом, основу патогенетической терапии воспаления составляет подавление или стимуляция одного или нескольких звеньев патогенеза воспаления.

Источник : Овсянников В.Г. Патологическая физиология, типовые патологические процессы. Учебное пособие. Изд. Ростовского университета, 1987. - 192 с.



© dagexpo.ru, 2024
Стоматологический сайт